Abstract

Fast neutron irradiation causes embrittlement of the reactor pressure vessel (RPV) material; therefore, it may end operation life before design lifetime. Well-known method to recuperate crystal lattice dislocations is annealing. In the current version of thorium fueled supercritical water-cooled reactor (SCWR) design proposed by the Institute of Nuclear Technology at Budapest University of Technology and Economics (BME NTI), the supercritical fluid flows upward between the core barrel and the inner surface of the RPV thereby, the coolant would keep the RPV's temperature at ∼500 °C. This reverse coolant flow direction would decrease the embrittlement of RPV by constant annealing. To minimize the fast neutron flux increase, a relatively thin shielding connected to the inner surface of the barrel could be used. This presents fast neutron irradiation analysis, performed for different settings of the shielding to reduce fast neutron flux reaching the inner surface of RPV.

References

1.
Reiss
,
T.
,
Csom
,
G.
,
Fehér
,
S.
, and
Czifrus
,
S.
,
2010
, “
The Simplified Supercritical Water-Cooled Reactor (SSCWR), A New SCWR Design
,”
Prog. Nucl. Energy
,
52
(
2
), pp.
177
189
.10.1016/j.pnucene.2009.06.006
2.
Reiss
,
T.
,
Csom
,
G.
,
Fehér
,
S.
,
Czifrus
,
S.
, and
Szibert
,
M.
,
2010
, “
Full-Core SSCWR Calculations Applying a Fast Computational Method
,”
Prog. Nucl. Energy
,
52
(
8
), pp.
767
776
.10.1016/j.pnucene.2010.06.003
3.
Reiss
,
T.
,
Csom
,
G.
,
Fehér
,
S.
, and
Czifrus
,
S.
,
2012
, “
Thorium as an Alternative Fuel for SCWRs
,”
Ann. Nucl. Energy
,
41
, pp.
67
78
.10.1016/j.anucene.2011.11.007
4.
IAEA
,
2005
, “
Thorium Fuel Cycle—Potential Benefits and Challenges
,” International Atomic Energy Agency, Vienna, Austria, Standard No.
IAEA-TECDOC-1450
.https://www-pub.iaea.org/mtcd/publications/pdf/te_1450_web.pdf
5.
Naessens
,
E. P.
, Jr.
,
Allen
,
K. S.
, and
Moretti
,
B. E.
,
2006
, “
Use of 240Pu Waste as a Burnable Absorber in Light Water Reactors
,”
Nucl. Sci. Eng.
,
152
(
3
), pp.
306
313
.10.13182/NSE06-A2584
6.
Brumovsky
,
M.
,
Ahlstrand
,
R.
,
Brynda
,
J.
,
Debarberis
,
L.
,
Kohopaa
,
J.
,
Kryukov
,
A.
, and
Server
,
W.
,
2008
, “
Annealing and Re-Embrittlement of Reactor Pressure Vessel Materials
,” European Commission, Brussels, Belgium, ATHENA WP-4, AMES Report No.
19
.https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/annealing-and-re-embrittlement-reactor-pressure-vessel-materials-state-art-report
7.
Steele
,
L. E.
,
1975
, “
Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels Reactors
,” IAEA, Vienna, Austria.
8.
Oh
,
S.
,
Lee
,
J. S.
,
Jang
,
C.
, and
Kimura
,
A.
,
2009
, “
Irradiation Hardening and Embrittlement in High-Cr Oxide Dispersion Strengthened Steels
,”
J. Nucl. Mater.
,
386
, pp.
503
506
.10.1016/j.jnucmat.2008.12.144
9.
Baindur
,
S.
,
2008
, “
Materials Challenges for the Supercritical Water-Cooled Reactor (SCWR)
,”
Bull. Can. Nucl. Soc.
,
29
(
1
), pp.
32
38
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.536.987&rep=rep1&type=pdf
10.
ASME
,
2007
, “
Boiler and Pressure Vessel Code, Section 2, Part D, Table 1A
,” American Society of Mechanical Engineers, New York.
11.
Schulenberg
,
T.
,
2012
,
High Performance Light Water Reactor: Design and Analyses
,
KIT Scientific Publishing
, Karlsruhe, Germany.
You do not currently have access to this content.