Abstract

Designing a novel scaled modular test facility as a part of an experiment for condensation heat transfer (CHT) in small modular reactors (SMRs) is the main focus of this study. This facility will provide data to evaluate models' scalability for predicting heat transfer in the passive containment cooling system (PCCS) of SMR. The nuclear industry recognizes SMRs as future candidates for clean, economic, and safe energy generation. However, licensing requires proper evaluation of the safety systems such as PCCS. The knowledge gap from the literature review showed a lack of high-resolution experimental data for scaling of PCCS and validation of computational fluid dynamics tools. In addition, the presently available test data are inconsistent due to unscaled geometric and varying physics conditions. These inconsistencies lead to inadequate test data benchmarking. To fill this research gap, this study developed three scaled (different diameters) condensing test sections with annular cooling for scale testing and analysis. This facility considered saturated steam as the working fluid with noncondensable gases like nitrogen and helium in different mass fractions. This facility also used a precooler unit for inlet steam conditioning and a postcooler unit for condensate cooling. The high fidelity sensors, instruments, and data acquisition systems are installed and calibrated. Finally, facility safety analysis and shakedown tests are performed.

References

1.
Ritchie
,
H.
, and
Roser
,
M.
,
2020
, “
Access to Energy
,” Our World in Data, Oxford, UK, accessed Dec. 24, 2019, https://ourworldindata.org/energy-access
2.
IEA,
2019
, “SDG7: Data and Projections,”
International Energy Agency
, Paris, France, accessed Dec. 24, 2019, https://www.iea.org/reports/sdg7-data-and-projections
3.
IEA
,
2019
, “CO2 Status Report—The Latest Trends in Energy and Emissions in 2018,”
IEA
, Paris, France, accessed Mar. 3, 2021, https://www.iea.org/reports/global-energy-co2-status-report-2019
4.
Letcher
,
T. M.
,
2019
,
Why Do we Have Global Warming
?,
Managing Global Warming
: An Interface of Technology and Human Issues, Elsevier, Amsterdam, The Netherlands, pp.
3
15
.
5.
Pioro
,
I.
,
Duffey
,
R. B.
,
Kirillov
,
P. L.
, and
Dort-Goltz
,
N.
,
2020
, “
Current Status of Reactors Deployment and Small Modular Reactors Development in the World
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
4
), p.
24
.10.1115/1.4047927
6.
Gustafson
,
A.
,
Marlon
,
J. R.
,
Goldberg
,
M. H.
,
Wang
,
X.
,
Ballew
,
M. T.
,
Rosenthal
,
S. A.
, and
Leiserowitz
,
A.
,
2020
, “
Blame Where Blame is Due: Many Americans Support Suing Fossil Fuel Companies for Global Warming Damages
,”
Environ. Sci. Policy Sustainable Dev.
,
62
(
2
), pp.
30
35
.10.1080/00139157.2020.1708649
7.
Suman
,
S.
,
2018
, “
Hybrid Nuclear-Renewable Energy Systems: A Review
,”
J. Cleaner Prod.
,
181
, pp.
166
177
.10.1016/j.jclepro.2018.01.262
8.
Khan
,
N.
,
Kalair
,
E.
,
Abas
,
N.
,
Kalair
,
A.
, and
Kalair
,
A.
,
2019
, “
Energy Transition From Molecules to Atoms and Photons
,”
Eng. Sci. Technol., Int. J.
,
22
(
1
), pp.
185
214
.10.1016/j.jestch.2018.05.002
9.
International Atomic Energy Agency (IAEA)
,
2015
, “
Indicators for Nuclear Power Development
,”
IAEA
Vienna
, Report No. NG-T-4.5.
10.
Letcher
,
T. M.
,
2020
, Future Energy: Improved, Sustainable, and Clean Options for Our Planet,
Elsevier Science
, Amsterdam, The Netherlands, accessed Mar. 3, 2021, https://www.elsevier.com/books/future-energy/letcher/978-0-08-102886-5
11.
Nuclear Energy Institute (NEI)
,
2019
, Nuclear Power by Number,
Nuclear Energy Institute
,
Washington, DC
, accessed Dec. 24, 2019, https://www.nei.org/resources/fact-sheets/nuclear-by-the-numbers, https://www.nei.org/CorporateSite/media/filefolder/resources/fact-sheets/nei-nuclear-by-the-numbers-092520- final.pdf
12.
Vujić
,
J.
,
Bergmann
,
R. M.
,
Škoda
,
R.
, and
Miletić
,
M.
,
2012
, “
Small Modular Reactors: Simpler, Safer, Cheaper?
,”
Energy
,
45
(
1
), pp.
288
295
.10.1016/j.energy.2012.01.078
13.
International Atomic Energy Agency
(IAEA),
2018
, A Supplement to: Advanced Reactors Information System (ARIS),
Advances in Small Modular Reactor Technology Developments
,
Vienna, Austria
, accessed Dec. 24, 2019, https://aris.iaea.org/Publications/SMR-Book_2018.pdf
14.
Bhowmik
,
P. K.
,
2016
, Nanofluid Operation and Valve Engineering of Super for Small Unit Passive Enclosed Reactor, Master's thesis,
Department of Nuclear Engineering, Seoul National University
,
Seoul, South Korea
, accessed Dec. 24, 2019, http://hdl.handle.net/10371/123511
15.
Alam
,
S. B.
,
Kumar
,
D.
,
Almutairi
,
B.
,
Bhowmik
,
P. K.
,
Goodwin
,
C.
, and
Parks
,
G. T.
,
2019
, “
Small Modular Reactor Core Design for Civil Marine Propulsion Using Micro-Heterogeneous Duplex Fuel. Part I: Assembly Level Analysis
,”
Nucl. Eng. Des.
,
346
, pp.
157
175
.10.1016/j.nucengdes.2019.03.005
16.
Bhowmik
,
P. K.
,
Shamim
,
J. A.
,
Chen
,
X.
, and
Suh
,
K. Y.
,
2021
, “
Rod Bundle Thermal-Hydraulics Experiment With Water and water-Al2O3 Nanofluid for Small Modular Reactor
,”
Ann. Nucl. Energy
,
150
, p.
107870
.10.1016/j.anucene.2020.107870
17.
Hidayatullah
,
H.
,
Susyadi
,
S.
, and
Subki
,
M. H.
,
2015
, “
Design and Technology Development for Small Modular Reactors–Safety Expectations, Prospects and Impediments of Their Deployment
,”
Prog. Nucl. Energy
,
79
, pp.
127
135
.10.1016/j.pnucene.2014.11.010
18.
Shamim
,
J. A.
,
Bhowmik
,
P. K.
,
Xiangyi
,
C.
, and
Suh
,
K. Y.
,
2016
, “
A New Correlation for Convective Heat Transfer Coefficient of Water–Alumina Nanofluid in a Square Array Subchannel Under PWR Condition
,”
Nucl. Eng. Des.
,
308
, pp.
194
204
.10.1016/j.nucengdes.2016.08.015
19.
Zhang
,
Y. P.
,
Niu
,
S. P.
,
Zhang
,
L. T.
,
Qiu
,
S. Z.
,
Su
,
G. H.
, and
Tian
,
W. X.
,
2015
, “
A Review on Analysis of LWR Severe Accident
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
4
), p.
041018
.10.1115/1.4030364
20.
Liu
,
Z.
, and
Fan
,
J.
,
2014
, “
Technology Readiness Assessment of Small Modular Reactor (SMR) Designs
,”
Prog. Nucl. Energy
,
70
, pp.
20
28
.10.1016/j.pnucene.2013.07.005
21.
Smith
,
M. C.
, and
Wright
,
R. F.
,
2012
, “
Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events
,”
Proceedings of the International Congress on Advances in Nuclear Power Plants—ICAPP'12
,
Chicago, IL
, June 24–28, p.
2799
.
22.
NuScale
,
2019
, “Passive Safety Systems,”
NuScale Power LLC
, Corvallis, OR, accessed Dec. 24, 2019. https://www.nuscalepower.com/benefits/safety-features/passive-systems
23.
Tanrikut
,
A.
, and
Yesin
,
O.
,
2000
, “
In-Tube Steam Condensation in the Presence of Air
,” Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC, accessed Mar. 3, 2021, https://www.nrc.gov/docs/ML0037/ML003727967.pdf
24.
Schulz
,
T. L.
,
2006
, “
Westinghouse AP1000 Advanced Passive Plant
,”
Nucl. Eng. Des.
,
236
(
14–16
), pp.
1547
1557
.10.1016/j.nucengdes.2006.03.049
25.
Sato
,
T.
, and
Kojima
,
Y.
,
2007
, “
Variations of a Passive Safety Containment for a BWR With Active and Passive Safety Systems
,”
Nucl. Eng. Des.
,
237
(
1
), pp.
74
86
.10.1016/j.nucengdes.2006.08.009
26.
Yadav
,
M. K.
,
Khandekar
,
S.
, and
Sharma
,
P. K.
,
2016
, “
An Integrated Approach to Steam Condensation Studies Inside Reactor Containments: A Review
,”
Nucl. Eng. Des.
,
300
, pp.
181
209
.10.1016/j.nucengdes.2016.01.004
27.
Tong
,
L.
,
Zou
,
J.
,
Tao
,
J.
, and
Cao
,
X.
,
2015
, “
Study on Heat Removal Capacity of PCCS of Advanced Passive PWR During Severe Accidents
,”
Nucl. Technol.
,
191
(
1
), pp.
15
26
.10.13182/NT14-93
28.
Wu
,
Q.
, and
Corradini
,
M.
,
2016
, “
Integral Reactor Containment Condensation Model and Experimental Validation
,”
Battelle Energy Alliance
,
Idaho Falls
, ID, Project No. 12–3630.
29.
Revankar
,
S. T.
,
Zhou
,
W.
, and
Henderson
,
G.
,
2008
, “
Experimental and Thermal-Hydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor
,”
Purdue University
,
West Lafayette, IN
, Report No. PU/NE-08-13.
30.
Othmer
,
D. F.
,
1929
, “
The Condensation of Steam
,”
Ind. Eng. Chem.
,
21
(
6
), pp.
576
583
.10.1021/ie50234a018
31.
Sparrow
,
E.
, and
Eckert
,
E.
,
1961
, “
Effects of Superheated Vapor and Non-Condensable Gases on Laminar Film Condensation
,”
AIChE J.
,
7
(
3
), pp.
473
477
.10.1002/aic.690070326
32.
Kim
,
S. J.
,
2000
, “
Turbulent Film Condensation of High-Pressure Steam in a Vertical Tube of Passive Secondary Condensation System
,” Ph.D. dissertation,
Korea Advanced Institute of Science and Technology
,
Daejeon, South Korea
.
33.
Oh
,
S.
, and
Revankar
,
S. T.
,
2006
, “
Experimental and Theoretical Investigation of Film Condensation With Non-Condensable Gas
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2523
2534
.10.1016/j.ijheatmasstransfer.2006.01.021
34.
Siddique
,
M.
,
1992
, “
The Effects of Non-Condensable Gases on Steam Condensation Under Forced Convection Conditions
,” Ph.D. dissertation,
Department of Nuclear Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
35.
Kuhn
,
S. Z.
,
1995
, “
Investigation of Heat Transfer From Condensing Steam-Gas Mixtures and Turbulent Films Flowing Downward Inside a Vertical Tube
,” Ph.D. dissertation,
University of California
,
Berkeley, CA
.
36.
Park
,
H. S.
,
1999
, “
Steam Condensation Heat Transfer in the Presence of Noncondenables in a Vertical Tube of Passive Containment Cooling System
,” Ph.D. dissertation,
Korea Advanced Institute of Science and Technology
,
Daejeon, South Korea
.
37.
Lee
,
K. Y.
,
2007
, “
The Effects of Non-Condensable Gas on Steam Condensation in a Vertical Tube of Passive Residual Heat Removal System
,” Ph.D. dissertation,
Pohang University of Science and Technology
,
Pohang, South Korea
.
38.
de la Rosa
,
J. C.
,
Escrivá
,
A.
,
Herranz
,
L. E.
,
Cicero
,
T.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Review on Condensation on the Containment Structures
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
32
66
.10.1016/j.pnucene.2008.01.003
39.
Su
,
J.
,
Fan
,
L.
, and
Gao
,
L.
,
2016
, “
Review of Steam Condensation Heat Transfer Under Containment Cooling System Condition
,”
At. Energy Sci. Technol.
,
50
(
11
), pp.
1956
1966
.10.7538/yzk.2016.50.11.1956
40.
Huang
,
J.
,
Zhang
,
J.
, and
Wang
,
L.
,
2015
, “
Review of Vapor Condensation Heat and Mass Transfer in the Presence of Non-Condensable Gas
,”
Appl. Therm. Eng.
,
89
, pp.
469
484
.10.1016/j.applthermaleng.2015.06.040
41.
Dehbi
,
A. A.
,
1991
, “
The Effects of Non-Condensable Gases on Steam Condensation Under Turbulent Natural Convection Conditions
,” Ph.D. dissertation,
Massachusetts Institute of Technology
,
Cambridge, MA
.
42.
Uchida
,
H.
,
Oyama
,
A.
, and
Togo
,
Y.
,
1965
, “
Evaluation of Post-Incident Cooling Systems of Light-Water Power Reactors
,”
Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy
, Geneva, Vol.
13
,
United Nations, New York
, Aug. 31–Sept. 9, pp.
93
104
.
43.
Tagami
,
T.
,
1965
, “
Interim Report on Safety Assessments and Facilities Establishment Project in Japan for Period Ending June 1965 (No. 1)
,” Unpublished work (February 1966).
44.
Fujii
,
T.
,
Kataoka
,
Y.
, and
Murase
,
M.
,
1996
, “
Evaporation and Condensation Heat Transfer in a Suppression Chamber of the Water Wall Type Passive Containment Cooling System
,”
J. Nucl. Sci. Technol.
,
33
(
5
), pp.
374
380
.10.1080/18811248.1996.9731921
45.
Murase
,
M.
,
Kataoka
,
Y.
, and
Fujii
,
T.
,
1993
, “
Evaporation and Condensation Heat Transfer With a Non-Condensable Gas Present
,”
Nucl. Eng. Des.
,
141
(
1–2
), pp.
135
143
.10.1016/0029-5493(93)90098-T
46.
Anderson
,
M. H.
,
Herranz
,
L. E.
, and
Corradini
,
M. L.
,
1998
, “
Experimental Analysis of Heat Transfer Within the ap600 Containment Under Postulated Accident Conditions
,”
Nucl. Eng. Des.
,
185
(
2–3
), pp.
153
172
.10.1016/S0029-5493(98)00232-5
47.
Liu
,
H.
,
Todreas
,
N.
, and
Driscoll
,
M.
,
2000
, “
An Experimental Investigation of a Passive Cooling Unit for Nuclear Plant Containment
,”
Nucl. Eng. Des.
,
199
(
3
), pp.
243
255
.10.1016/S0029-5493(00)00229-6
48.
Lee
,
U.-J.
, and
Park
,
G.-C.
,
2002
, “
Experimental Study on Hydrogen Behavior at a Subcompartment in the Containment Building
,”
Nucl. Eng. Des.
,
217
(
1–2
), pp.
41
47
.10.1016/S0029-5493(02)00136-X
49.
Cheng
,
X.
,
Bazin
,
P.
,
Cornet
,
P.
,
Hittner
,
D.
,
Jackson
,
J.
,
Jimenez
,
J. L.
,
Naviglio
,
A.
,
Oriolo
,
F.
, and
Petzold
,
H.
,
2001
, “
Experimental Database for Containment Thermal-Hydraulic Analysis
,”
Nucl. Eng. Des.
,
204
(
1–3
), pp.
267
284
.10.1016/S0029-5493(00)00311-3
50.
Lee
,
K. Y.
, and
Kim
,
M. H.
,
2008
, “
Experimental and Empirical Study of Steam Condensation Heat Transfer With a Non-Condensable Gas in a Small-Diameter Vertical Tube
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
207
216
.10.1016/j.nucengdes.2007.07.001
51.
Mullin
,
E. M.
,
2015
, “
High-Pressure Condensation in an SMR Containment
,” Master's thesis,
Oregon State University
,
Corvallis, OR
.
52.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
, Cambridge, UK.
53.
Vierow
,
K. M.
,
1990
, “
Behavior of Steam-Air Systems Condensing in Cocurrent Vertical Downflow
,” Master's thesis,
University of California
,
Berkeley, CA
.
54.
Ogg
,
D. G.
,
1991
,
Vertical Downflow Condensation Heat Transfer in Gas-Steam Mixtures
,
University of California
,
Berkeley, CA
.
55.
Akaki
,
H.
,
Kataoka
,
Y.
, and
Murase
,
M.
,
1995
, “
Measurement of Condensation Heat Transfer Coefficient Inside a Vertical Tube in the Presence of Non-Condensable Gas
,”
J. Nucl. Sci. Technol.
,
32
(
6
), pp.
517
526
.10.1080/18811248.1995.9731739
56.
Jang
,
Y.-J.
,
Choi
,
D.-J.
,
Lee
,
Y.-G.
, and
Kim
,
S.
,
2015
, “
Experimental Study of Condensation Heat Transfer in the Presence of Non-Condensable Gas on the Vertical Tube
,”
Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, NURETH-16, Chicago, IL, Aug. 30–Sept. 4, 2015, pp.
6096
6109
.
57.
Sabharwall
,
P.
,
O'Brien
,
J. E.
,
McKellar
,
M. G.
,
Housley
,
G. K.
, and
Bragg-Sitton
,
S. M.
,
2015
, “
Scaling Analysis Techniques to Establish Experimental Infrastructure for Component, Subsystem, and Integrated System Testing
,” Idaho National Lab, Idaho Falls, ID, Report No.
INL/EXT-15-34456
.https://inldigitallibrary.inl.gov/sites/sti/sti/6492840.pdf
58.
Yan
,
Y.
,
Shi
,
S.
, and
Ishii
,
M.
,
2016
, “
Scaling Analysis and Facility Design for Stability Investigation During Accidents in a PWR-Type SMR
,”
ASME
Paper No. ICONE24-60476.https://doi.org/10.1115/ICONE24-60476
59.
Kalra
,
V.
,
2017
, “
CFD Validation and Scaling of Condensation Heat Transfer
,” Master's thesis,
Missouri University of Science and Technology
,
Rolla, MO
.
60.
Isao
,
K.
, and
Mamoru
,
I.
,
1987
, “
Drift Flux Model for Large Diameter Pipe and New Correlation for Pool Void Fraction
,”
Int. J. Heat Mass Transfer
,
30
(
9
), pp.
1927
1939
.10.1016/0017-9310(87)90251-1
61.
Shulyak
,
N.
,
2011
, “
Westinghouse Small Modular Reactor: Taking Proven Technology to the Next Level
,” IAEA INPRO Dialogue Forum, Vienna, accessed Dec. 24, 2019, https://nucleus.iaea.org/sites/INPRO/df3/Session%201/12.SMR-Westinghouse.pdf
62.
Crawley
,
F.
, and
Tyler
,
B.
,
2015
,
HAZOP: Guide to Best Practice
, 3rd ed.,
Elsevier
, Amsterdam, The Netherlands, p.
168
.
63.
Kletz
,
T. A.
,
1997
, “
Hazop—Past and Future
,”
Reliab. Eng. Syst. Saf.
,
55
(
3
), pp.
263
266
.10.1016/S0951-8320(96)00100-7
You do not currently have access to this content.