Abstract

An improved understanding of the present and future marine climatology is necessary for numerous activities, such as the operation of offshore structures, optimization of ship routes, and evaluation of wave energy resources. To produce global wave information, the WAVEWATCH III wave model was forced with wind and ice-cover data from an RCP8.5 EC-Earth system integration for two 30-year time slices. The first covering the periods from 1980 to 2009 represents the present climate, and the second, covering the periods from 2070 to 2099, represents the climate at the end of the twenty-first century. Descriptive empirical statistics of wind and wave parameters are obtained for different 30-year time slices, for the North Atlantic Ocean. Regarding wind, magnitude and direction will be used. For wave, significant wave height of the total sea, mean wave period, peak period, mean wave direction, and energy will be investigated. Changes from present to future climate are evaluated, regarding both mean and extreme events. Maps of these empirical statistics are presented. The long-term monthly joint distribution of significant wave heights and peak periods is generated. Changes from present to future climate are assessed, comparing the empirical statistics between time slices.

References

1.
Rusu
,
L.
, and
Guedes Soares
,
C.
,
2012
, “
Wave Energy Assessments in the Azores Islands
,”
Renewable Energy
,
45
, pp.
183
196
.
2.
Laugel
,
A.
,
Menendez
,
M.
,
Benoit
,
M.
,
Mattarolo
,
G.
, and
Méndez
,
F.
,
2014
, “
Wave Climate Projections Along the French Coastline: Dynamical Versus Statistical Downscaling Methods
,”
Ocean Modell.
,
84
, pp.
35
50
.
3.
Rusu
,
E.
, and
Guedes Soares
,
C.
,
2013
, “
Coastal Impact Induced by a Pelamis Wave Farm Operating in the Portuguese Nearshore
,”
Renewable Energy
,
58
, pp.
34
49
.
4.
Li
,
F.
,
van Gelder
,
P. H. A. J. M.
,
Vrijling
,
J. K.
,
Callaghan
,
D. P.
,
Jongejan
,
R. B.
, and
Ranasinghe
,
R.
,
2014
, “
Probabilistic Estimation of Coastal Dune Erosion and Recession by Statistical Simulation of Storm Events
,”
Appl. Ocean Res.
,
47
, pp.
53
62
.
5.
Trifonova
,
E. V.
,
Valchev
,
N. N.
,
Andreeva
,
N. K.
, and
Eftimova
,
P. T.
,
2012
, “
Critical Storm Thresholds for Morphological Changes in the Western Black Sea Coastal Zone
,”
Geomorphology
,
143
, pp.
81
94
.
6.
Van Vuuren
,
D. P.
,
Edmonds
,
J.
,
Kainuma
,
M.
,
Riahi
,
K.
,
Thomson
,
A.
,
Hibbard
,
K.
,
Hurtt
,
G. C.
,
Kram
,
T.
,
Krey
,
V.
,
Lamarque
,
J. F.
,
Masui
,
T.
,
Meinshausen
,
M.
,
Nakicenovic
,
N.
,
Smith
,
S. J.
, and
Rose
,
S. K.
,
2011
, “
The Representative Concentration Pathways: An Overview
,”
Clim. Change
,
109
(
1–2
), pp.
5
31
.
7.
IPCC
,
2007
, “Climate Change 2007. Impacts, Adaptation and Vulnerability,”
Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
M. L.
Parry
,
O. F.
Canziani
,
J. P.
Palutikof
,
P. J.
van der Linden
, and
C. E.
Hanson
, eds.,
Cambridge University Press
,
Cambridge, UK
, p.
976
.
8.
Hemer
,
M. A.
,
Fan
,
Y.
,
Mori
,
N.
,
Semedo
,
A.
, and
Wang
,
X. L.
,
2013
, “
Projected Changes in Wave Climate From a Multi-model Ensemble
,”
Nat. Clim. Change
,
3
(
5
), pp.
471
476
.
9.
Semedo
,
A.
,
Weisse
,
R.
,
Behrens
,
A.
,
Sterl
,
A.
,
Bengtsson
,
L.
, and
Günther
,
H.
,
2013
, “
Projection of Global Wave Climate Change Toward the End of the Twenty-First Century
,”
J. Clim.
,
26
(
21
), pp.
8269
8288
.
10.
Wang
,
C.
,
Zhang
,
L.
,
Lee
,
S. K.
,
Wu
,
L.
, and
Mechoso
,
C. R.
,
2014
, “
A Global Perspective on CMIP5 Climate Model Biases
,”
Nat. Clim. Change
,
4
(
3
), pp.
201
205
.
11.
Morim
,
J.
,
Hemer
,
M.
,
Cartwright
,
N.
,
Strauss
,
D.
, and
Andutta
,
F.
,
2018
, “
On the Concordance of 21st Century Wind-Wave Climate Projections
,”
Global Planet. Change
,
167
, pp.
160
171
.
12.
Bricheno
,
L. M.
, and
Wolf
,
J.
,
2018
, “
Future Wave Conditions of Europe, in Response to High-End Climate Change Scenarios
,”
J. Geophys. Res. Oceans
,
123
(
12
), pp.
8762
8791
.
13.
Bitner-Gregersen
,
E. M.
,
Vanem
,
E.
,
Gramstad
,
O.
,
Hørte
,
T.
,
Aarnes
,
O. J.
,
Reistad
,
M.
,
Breivik
,
Ø
,
Magnusson
,
A. K.
, and
Natvig
,
B.
,
2018
, “
Climate Change and Safe Design of Ship Structures
,”
Ocean Eng.
,
149
, pp.
226
237
.
14.
Aarnes
,
O. J.
,
Reistad
,
M.
,
Breivik
,
Ø
,
Bitner-Gregersen
,
E.
,
Ingolf Eide
,
L.
,
Gramstad
,
O.
,
Magnusson
,
A. K.
,
Natvig
,
B.
, and
Vanem
,
E.
,
2017
, “
Projected Changes in Significant Wave Height Toward the End of the 21st Century: Northeast Atlantic
,”
J. Geophys. Res. Oceans
,
122
(
4
), pp.
3394
3403
.
15.
Camus
,
P.
,
Losada
,
I. J.
,
Izaguirre
,
C.
,
Espejo
,
A.
,
Menéndez
,
M.
, and
Pérez
,
J.
,
2017
, “
Statistical Wave Climate Projections for Coastal Impact Assessments
,”
Earth's Future
,
5
(
9
), pp.
918
933
.
16.
Tolman
,
H. L.
,
1997
, User manual and system documentation of WAVEWATCH-III version 1.15. NOAA / NWS / NCEP / OMB Technical Note 151, p.
97
.
17.
Tolman
,
H. L.
,
1999
, User manual and system documentation of WAVEWATCH-III version 1.18. NOAA / NWS / NCEP / OMB Technical Note 166, p.
110
.
18.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horányi
,
A.
,
Muñoz-Sabater
,
J.
,
Nicolas
,
J.
,
Peubey
,
C.
,
Radu
,
R.
,
Schepers
,
D.
,
Simmons
,
A.
,
Soci
,
C.
,
Abdalla
,
S.
,
Abellan
,
X.
,
Balsamo
,
G.
,
Bechtold
,
P.
,
Biavati
,
G.
,
Bidlot
,
J.
,
Bonavita
,
M.
,
Chiara
,
G.
,
Dahlgren
,
P.
,
Dee
,
D.
,
Diamantakis
,
M.
,
Dragani
,
R.
,
Flemming
,
J.
,
Forbes
,
R.
,
Fuentes
,
M.
,
Geer
,
A.
,
Haimberger
,
L.
,
Healy
,
S.
,
Hogan
,
R. J.
,
Hólm
,
E.
,
Janisková
,
M.
,
Keeley
,
S.
,
Laloyaux
,
P.
,
Lopez
,
P.
,
Lupu
,
C.
,
Radnoti
,
G.
,
Rosnay
,
P.
,
Rozum
,
I.
,
Vamborg
,
F.
,
Villaume
,
S.
, and
Thépaut
,
J. N.
,
2020
, “
The ERA5 Global Reanalysis
,”
Q. J. R. Metereol. Soc.
,
146
(
730
), pp.
1999
2049
.
19.
WAMDIG
,
1988
, “
The WAM Model—A Third Generation Ocean Wave Prediction Model
,”
J. Phys. Oceanogr.
,
18
(
12
), pp.
1775
1810
.
20.
Komen
,
G. J.
,
1986
, “Activities of the WAM (Wave Modelling) Group,”
Oceanology
,
Springer
,
Dordrecht
, pp.
121
127
.
21.
Tolman
,
H. L.
,
1989
, The Numerical Model WAVEWATCH: A Third-Generation Model for the Hindcasting of Wind Waves on Tides in Shelf Seas, Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, Report No. 89-2, p.
72
.
22.
Tolman
,
H. L.
,
1991
, “
A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady and Inhomogeneous Depths and Currents
,”
J. Phys. Oceanogr.
,
21
(
6
), pp.
782
797
.
23.
Tolman
,
H. L.
,
1992
, “
Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model
,”
J. Phys. Oceanogr.
,
22
(
10
),, pp.
1095
1111
.
24.
The WAVEWATCH III Development Group (WW3DG)
,
2016
, User manual and system documentation of WAVEWATCH III version 5.16. Technical Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, p.
326
.
25.
Hazeleger
,
W.
,
Severijns
,
C.
,
Semmler
,
T.
,
Ştefănescu
,
S.
,
Yang
,
S.
,
Wang
,
X.
,
Wyser
,
K.
,
Dutra
,
E.
,
Baldasano
,
J. M.
,
Bintanja
,
R.
,
Bougeault
,
P.
,
Caballero
,
R.
,
Ekman
,
A. M. L.
,
Christensen
,
J. H.
,
van den Hurk
,
B.
,
Jimenez
,
P.
,
Jones
,
C.
,
Kållberg
,
P.
,
Koenigk
,
T.
,
McGrath
,
R.
,
Miranda
,
P.
,
van Noije
,
T.
,
Palmer
,
T.
,
Parodi
,
J. A.
,
Schmith
,
T.
,
Selten
,
F.
,
Storelvmo
,
T.
,
Sterl
,
A.
,
Tapamo
,
H.
,
Vancoppenolle
,
M.
,
Viterbo
,
P.
, and
Willén
,
U.
,
2010
, “
EC-Earth: A Seamless Earth-System Prediction Approach in Action
,”
Bull. Am. Meteorol. Soc
,
91
(
10
), pp.
1357
1363
.
26.
Taylor
,
K. E.
,
Stouffer
,
R. J.
, and
Meehl
,
G. A.
,
2012
, “
An Overview of CMIP5 and the Experiment Design
,”
Bull. Am. Meteorol. Soc.
,
93
(
4
), pp.
485
498
.
27.
Moss
,
R. H.
,
Edmonds
,
J. A.
,
Hibbard
,
K. A.
,
Manning
,
M. R.
,
Rose
,
S. K.
,
Van Vuuren
,
D. P.
,
Carter
,
T. R.
,
Emori
,
S.
,
Kainuma
,
M.
,
Kram
,
T.
, and
Meehl
,
G. A.
,
2010
, “
The Next Generation of Scenarios for Climate Change Research and Assessment
,”
Nature
,
463
, pp.
747
756
.
28.
Hazeleger
,
W.
,
Wang
,
X.
,
Severijns
,
C.
,
Ştefănescu
,
S.
,
Bintanja
,
R.
,
Sterl
,
A.
,
Wyser
,
K.
,
Semmler
,
T.
,
Yang
,
S.
,
van den Hurk
,
B.
,
van Noije
,
T.
,
van der Linden
,
E.
, and
Van der Wiel
,
K.
,
2012
, “
EC-Earth V2. 2: Description and Validation of a New Seamless Earth System Prediction Model
,”
Clim. Dyn.
,
39
(
11
), pp.
2611
2629
.
29.
Copernicus Climate Change Service (C3S)
,
2017
. ERA5: Fifth Generation of ECMWF Atmospheric Reanalyzes of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS), December 2019, https://cds.climate.copernicus.eu/cdsapp#!/home
30.
Hersbach
,
H.
, and
Dee
,
D.
,
2016
, ERA5 Reanalysis Is in Production, ECMWF Newsletter No. 147, 7.
31.
Muhammed Naseef
,
T.
, and
Sanil Kumar
,
V.
,
2020
, “
Climatology and Trends of the Indian Ocean Surface Waves Based on 39-Year Long ERA5 Reanalysis Data
,”
Int. J. Climatol.
,
40
(
2
), pp.
979
1006
.
32.
Sreelakshmi
,
S.
, and
Bhaskaran
,
P. K.
,
2020
, “
Wind-generated Wave Climate Variability in the Indian Ocean Using ERA-5 Dataset
,”
Ocean Eng.
,
209
, p.
107486
.
33.
Campos
,
R. M.
, and
Guedes Soares
,
C.
,
2016
, “
Comparison and Assessment of Three Wave Hindcasts in the North Atlantic Ocean
,”
J. Oper. Oceanogr.
,
9
(
1
), pp.
26
44
.
34.
Bento
,
A. R.
,
Gonçalves
,
M.
,
Campos
,
R.
, and
Guedes Soares
,
C.
,
2016
, “
Comparison Between Two Forecast Systems Implemented With WAM and WaveWatch 3 for the North Atlantic
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Busan, South Korea
,
June
,
American Society of Mechanical Engineers
, Vol.
49941
, p.
V003T02A035
.
35.
Stefanakos
,
C.
,
2019
, “
Intercomparison of Wave Reanalysis Based on ERA5 and WW3 Databases
,”
Proceedings of the 29th International Ocean and Polar Engineering Conference
,
Honolulu, HI
,
June
,
International Society of Offshore and Polar Engineers
, pp.
2506
2512
.
36.
Silva
,
D.
,
Martinho
,
P.
, and
Guedes Soares
,
C.
,
2018
, “
Wave Energy Distribution Along the Portuguese Continental Coast Based on a Thirty-Three Years Hindcast
,”
Renewable Energy
,
127
(
4
), pp.
1067
1075
.
37.
Mørk
,
G.
,
Barstow
,
S.
,
Kabuth
,
A.
, and
Pontes
,
M. T.
, “
Assessing the Global Wave Energy Potential, 2010
,”
Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering.
ASME Paper No. OMAE2010-20473.
38.
Overland
,
J. E.
,
Wang
,
M.
,
Walsh
,
J. E.
, and
Stroeve
,
J. C.
,
2014
, “
Future Arctic Climate Changes: Adaptation and Mitigation Time Scales
,”
Earth's Future
,
2
(
2
), pp.
68
74
.
39.
Seiler
,
C.
, and
Zwiers
,
F. W.
,
2016
, “
How Will Climate Change Affect Explosive Cyclones in the Extratropics of the Northern Hemisphere?
,”
Clim. Dyn.
,
46
(
11
), pp.
3633
3644
.
40.
Wolf
,
J.
, and
Woolf
,
D. K.
,
2006
, “
Waves and Climate Change in the North-East Atlantic
,”
Geophys. Res. Lett.
,
33
(
6
), p.
L06604
.
You do not currently have access to this content.