Abstract

The goal of this work is to investigate the fetch patterns and configurations associated with extratropical cyclones that promote extreme wave events in the western portion of the South Atlantic Ocean. Cyclones are identified and tracked using an objective algorithm and linked to winter extreme Hs events in 10 years of ERA5. The results show the occurrence of 10.7 ± 3.2 winter storms associated with extreme waves within the domain. The cyclone size and intensity show that extreme waves occurring within the domain are mainly related to the intensification stage of the cyclones in the region. There is no relevant difference between mean wind and wave direction during the event, being the SW/W directions dominant. The analysis of the fetch evolution during the lifecycle of the cyclones associated with the most extreme events showed that the surface winds present their maximum usually 10 h–24 h before the maximum Hs. Although large fetches develop along the continental shelf, usually within the cold sector of the cyclone, the Hsmax are located northwestward from the cyclone's center, in the downwind end of the fetch. At the end of the event, the extreme region detaches from the cyclone fetch while still propagating northeastward. At this stage, the swell waves are dominant, with a large peak period and wave age.

References

1.
Gan
,
M. A.
, and
Rao
,
V. B.
,
1994
, “
The Influence of the Andes Cordillera on Transient Disturbances
,”
Mon. Weather Rev.
,
122
(
6
), pp.
1141
1157
.
2.
Vera
,
C. S.
,
Vigliarolo
,
P. K.
, and
Berbery
,
E. H.
,
2002
, “
Cold Season Synoptic-Scale Waves Over Subtropical South America
,”
Mon. Weather Rev.
,
130
(
3
), pp.
684
699
.
3.
Mendes
,
D.
,
Souza
,
E. P.
,
Isabel Trigo
,
F.
, and
Miranda
,
P. M. A.
,
2007
, “
On Precursors of South American Cyclogenesis
,”
Tellus A
,
59
(
1
), pp.
114
121
.
4.
Campos
,
R. M.
,
Parente
,
C. E.
, and
de Camargo
,
R.
,
2012
, “
Extreme Wave Analysis in Campos Basin (Rio de Janeiro—Brazil) Associated With Extra-Tropical Cyclones and Anticyclones
,”
Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
, ASME Paper OMAE2012-83117.
5.
Campos
,
R. M.
,
Alves
,
J. H. G. M.
,
Guedes Soares
,
C.
,
Guimaraes
,
L. G.
, and
Parente
,
C. E.
,
2018
, “
Extreme Wind-Wave Modeling and Analysis in the South Atlantic Ocean
,”
Ocean Model.
,
124
, pp.
75
93
.
6.
Takbash
,
A.
,
Young
,
I. R.
, and
Breivik
,
Ø
,
2019
, “
Global Wind Speed and Wave Height Extremes Derived From Long-Duration Satellite Records
,”
J. Climate
,
32
(
1
), pp.
109
126
.
7.
Ponce de León
,
S.
, and
Bettencourt
,
J. H.
,
2019
, “
Composite Analysis of North Atlantic Extra-Tropical Cyclone Waves From Satellite Altimetry Observation
,”
Adv. Space Res.
8.
Campos
,
R. M.
, and
Guedes Soares
,
C.
,
2016
, “
Comparison and Assessment of Three Wave Hindcasts in the North Atlantic Ocean
,”
J. Oper. Oceanogr.
,
9
(
1
), pp.
26
44
.
9.
Gan
,
M. A.
, and
Rao
,
V.B.
,
1991
, “
Surface Cyclogenesis Over South America
”.
Mon. Weather Rev.
,
119
(
5
), pp.
1293
1302
.
10.
Murray
,
R. J.
, and
Simmonds
,
I.
,
1991
, “
A Numerical Scheme for Tracking Cyclone Centres From Digital Data. Part II: Application to January and July General Circulation Model Simulations
,”
Aust. Meteorol. Mag.
,
39
(
3
), pp.
167
180
.
11.
Jones
,
D. A.
, and
Simmonds
,
I.
,
1993
, “
A Climatology of Southern Hemisphere Extratropical Cyclones
,”
Clim. Dyn.
,
9
(
3
), pp.
131
145
.
12.
Mendes
,
D.
,
Souza
,
E. P.
,
Marengo
,
J.
, and
Mendes
,
M. C. D.
,
2010
, “
Climatology of Extratropical Cyclones Over the South American-Southern Oceans Sector
,”
Theor. Appl. Climatol.
,
100
(
3–4
), pp.
239
250
.
13.
Sinclair
,
M. R.
,
1994
, “
An Objective Cyclone Climatology for the Southern Hemisphere
,”
Mon. Weather Rev.
,
122
(
10
), pp.
2239
2256
.
14.
Hoskins
,
B. J.
, and
Hodges
,
K. I.
,
2005
, “
A New Perspective on Southern Hemisphere Storm Tracks
,”
J. Clim.
,
18
(
20
), pp.
4108
4129
.
15.
Reboita
,
M. S.
,
da Rocha
,
R. P.
,
Ambrizzi
,
T.
, and
Sugahara
,
S.
,
2010
, “
South Atlantic Ocean Cyclogenesis Climatology Simulated by Regional Climate Model (RegCM3)
,”
Clim. Dyn.
,
35
(
7–8
), pp.
1331
1347
.
16.
Gramcianinov
,
C. B.
,
Hodges
,
K. I.
, and
Camargo
,
R.
,
2019
, “
The Properties and Genesis Environments of South Atlantic Cyclones
,”
Clim. Dyn.
,
53
, pp.
4115
4140
.
17.
Gramcianinov
,
C. B.
,
Campos
,
R. M.
,
Guedes Soares
,
C.
, and
Camargo
,
R.
,
2020
, “
Extreme Waves Generated by Cyclonic Winds in the Western Portion of the South Atlantic Ocean
,”
Ocean Eng.
,
213
(
1
), p.
107745
.
18.
Rocha
,
R. P.
,
Sugahara
,
S.
, and
Silveira
,
R. B.
,
2003
, “
Sea Waves Generated by Extratropical Cyclones in the South Atlantic Ocean: Hindcast and Validation Against Altimeter Data
,”
Weather Forecast.
,
19
(
2
), pp.
398
410
.
19.
Dragani
,
W. C.
,
Cerne
,
B. S.
,
Campetella
,
C. M.
,
Possia
,
N. E.
, and
Campos
,
M. I.
,
2013
, “
Synoptic Patterns Associated With the Highest Wind-Waves at the Mouth of the Río de la Plata Estuary
,”
Dyn. Atmos. Ocean.
,
61–62
, pp.
1
13
.
20.
Innocentini
,
V.
, and
Caetano Neto
,
E. D. S.
,
1996
, “
A Case Study of the 9 August 1988 South Atlantic Storm: Numerical Simulations of the Wave Activity
,”
Weather Forecast.
,
11
(
1
), pp.
78
88
.
21.
Godoi
,
V. A.
,
Parente
,
C. E.
, and
Torres
,
A. R. T.
,
2014
, “
An Overview of Events of High Sea Waves at the Mouth of Guanabara Bay
,”
Pan-Am. J. Aquat. Sci.
,
9
(
2
), pp.
70
87
.
22.
Romeu
,
M. A. R.
,
Fontoura
,
J. A. S.
, and
Melo
,
E.
,
2015
, “
Typical Scenarios of Wave Regimes Off Rio Grande do Sul, Southern Brazil
,”
J. Coast. Res.
,
31
(
1
), pp.
61
68
.
23.
Campos
,
R. M.
,
Guedes Soares
,
C.
,
Alves
,
J. H. G. M.
,
Parente
,
C. E.
, and
Guimaraes
,
L. G.
,
2019
, “
Regional Long-Term Extreme Wave Analysis Using Hindcast Data From the South Atlantic Ocean
,”
Ocean Eng.
,
179
, pp.
202
212
.
24.
Pianca
,
C.
,
Mazzini
,
P. L. F.
, and
Siegle
,
E.
,
2010
, “
Brazilian Offshore Wave Climate Based on NWW3 Reanalysis
,”
Braz. J. Oceanogr.
,
58
(
1
), pp.
53
70
.
25.
Babanin
,
A. V.
,
Rogers
,
W. E.
,
de Camargo
,
R.
,
Doble
,
M.
,
Durrant
,
T.
,
Filchuk
,
K.
,
Ewans
,
K.
,
Hemer
,
M.
,
Janssen
,
T.
,
Kelly-Gerreyn
,
B.
,
Machutchon
,
K.
,
McComb
,
P.
,
Qiao
,
F.
,
Schulz
,
E.
,
Skvortsov
,
A.
,
Thomson
,
J.
,
Vichi
,
M.
,
Violante-Carvalho
,
N.
,
Wang
,
D.
,
Waseda
,
T.
,
Williams
,
G.
, and
Young
,
I. R.
,
2019
, “
Waves and Swells in High Wind and Extreme Fetches, Measurements in the Southern Ocean
,”
Front. Mar. Sci.
,
6
, pp.
1
12
.
26.
Young
,
I. R.
,
2003
, “
A Review of the sea State Generated by Hurricanes
,”
Mar. Struct.
,
16
(
3
), pp.
201
218
.
27.
Young
,
I. R.
, and
Vinoth
,
J.
,
2013
, “
An “Extended Fetch” Model for the Spatial Distribution of Tropical Cyclone Wind-Waves as Observed by Altimeter
,”
Ocean Eng.
,
70
, pp.
14
24
.
28.
Kudryavtsev
,
V.
,
Golubkin
,
P.
, and
Chapron
,
B.
,
2015
, “
A Simplified Wave Enhancement Criterion for Moving Extreme Events
,”
J. Geophys. Res.
,
120
(
11
), pp.
7538
7558
.
29.
Rapizo
,
H.
,
Babanin
,
A. V.
,
Schulz
,
E.
,
Hemer
,
M. A.
, and
Durrant
,
T. H.
,
2015
, “
Observation of Wind-Waves From a Moored Buoy in the Southern Ocean
,”
Ocean Dyn.
,
65
(
9–10
), pp.
1275
1288
.
30.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horányi
,
A.
,
Muñoz-Sabater
,
J.
,
Nicolas
,
J.
,
Peubey
,
C.
,
Radu
,
R.
,
Schepers
,
D.
,
Simmons
,
A.
,
Soci
,
C.
,
Abdalla
,
S.
,
Abellan
,
X.
,
Balsamo
,
G.
,
Bechtold
,
P.
,
Biavati
,
G.
,
Bidlot
,
J.
,
Bonavita
,
M.
,
De Chiara
,
G.
,
Dahlgren
,
P.
,
Dee
,
D.
,
Diamantakis
,
M.
,
Dragani
,
R.
,
Flemming
,
J.
,
Forbes
,
R.
,
Fuentes
,
M.
,
Geer
,
A.
,
Haimberger
,
L.
,
Healy
,
S.
,
Hogan
,
R. J.
,
Hólm
,
E.
,
Janisková
,
M.
,
Keeley
,
S.
,
Laloyaux
,
P.
,
Lopez
,
P.
,
Lupu
,
C.
,
Radnoti
,
G.
,
de Rosnay
,
P.
,
Rozum
,
I.
,
Vamborg
,
F.
,
Villaume
,
S.
, and
Thépaut
,
J. N.
,
2020
, “
The ERA5 Global Reanalysis
,”
Q. J. R. Meteorol. Soc.
,
146
(
730
), pp.
1999
2049
.
31.
Copernicus Climate Change Service (C3S) 2017
,
2019
, “
ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate
”.
Copernicus Climate Change Service Climate Data Store (CDS), July
, https://cds.climate.copernicus.eu/cdsapp#!/home
32.
The Wamdi Group
,
1988
, “
The WAM Model—A Third Generation Ocean Wave Prediction Model
,”
J. Phy. Oceanogr.
,
18
(
12
), pp.
1775
1810
.
33.
Hersbach
,
H.
,
de Rosnay
,
P.
,
Bell
,
B.
,
Schepers
,
D.
,
Simmons
,
A. J.
,
Soci
,
C.
,
Abdalla
,
S.
,
Balmaseda
,
M. A.
,
Balsamo
,
G.
,
Bechtold
,
P.
,
Berrisford
,
P.
,
Bidlot
,
J.
,
de Boisséson
,
E.
,
Bonavita
,
M.
,
Browne
,
P.
,
Buizza
,
R.
,
Dahlgren
,
P.
,
Dee
,
D. P.
,
Dragani
,
R.
,
Diamantaki
,
M.
,
Flemming
,
J.
,
Forbes
,
R.
,
Geer
,
A. J.
,
Haiden
,
T.
,
Hólm
,
E. V.
,
Haimberger
,
L.
,
Hogan
,
R.
,
Horányi
,
A.
,
Janisková
,
M.
,
Laloyaux
,
P.
,
Lopez
,
P.
,
Muñoz Sabater
,
J.
,
Peubey
,
C.
,
Radu
,
R.
,
Richard- son
,
D.
,
Thépaut
,
J.-N.
,
Vitart
,
F.
,
Yang
,
X.
,
Zsótér
,
E.
, and
Zuo
,
H.
,
2018
, “
Operational Global Reanalysis: Progress, Future Directions and Synergies With NWP
”.
ERA Report Series No. 27, ECMWF, Reading
.
34.
National Geophysical Data Center/NESDIS/NOAA/U.S. Department of Commerce
,
2011
,
ETOPO1, Global 1 Arc-minute Ocean Depth and Land Elevation From the US National Geophysical Data Center (NGDC)
.
Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Accessed June 2019
.
35.
Belmonte Rivas
,
M.
, and
Stoffelen
,
A.
,
2019
, “
Characterizing ERA-Interim and ERA5 Surface Wind Biases Using ASCAT
,”
Ocean Sci.
,
15
(
3
), pp.
831
852
.
36.
Gramcianinov
,
C. B.
,
Campos
,
R. M.
,
de Camargo
,
R.
,
Hodges
,
K. I.
,
Guedes Soares
,
C.
, and
da Silva Dias
,
P. L.
,
2020
, “
Analysis of Atlantic Extratropical Storm Tracks Characteristics in 41 Years of ERA5 and CFSR/CFSv2 Databases
,”
Ocean Eng.
,
216
, p.
108111
.
37.
Takbash
,
A.
, and
Young
,
I. R.
,
2020
, “
Long-Term and Seasonal Trends in Global Wave Height Extremes Derived From ERA-5 Reanalysis Data
,”
J. Mar. Sci. Eng.
,
8
(
12
), p.
1015
.
38.
Hodges
,
K. I.
,
1994
, “
A General Method for Tracking Analysis and Its Application to Meteorological Data
,”
Mon. Weather Rev.
,
122
(
11
), pp.
2573
2586
.
39.
Hodges
,
K. I.
,
1995
, “
Feature Tracking on the Unit Sphere
,”
Mon. Weather Rev.
,
123
(
12
), pp.
3458
3465
.
40.
Hodges
,
K. I.
,
1999
, “
Adaptive Constraints for Feature Tracking
,”
Mon. Weather Rev.
,
127
(
6
), pp.
1362
1373
.
41.
Hoskins
,
B. J.
, and
Hodges
,
K. I.
,
2002
, “
New Perspectives on the Northern Hemisphere Winter Storm Tracks
,”
J. Atmos. Sci.
,
59
(
6
), pp.
1041
1061
.
42.
Dacre
,
H. F.
, and
Gray
,
S. L.
,
2013
, “
Quantifying the Climatological Relationship Between Extratropical Cyclone Intensity and Atmospheric Precursors
,”
Geophys. Res. Lett.
,
40
(
10
), pp.
2322
2327
.
43.
Grise
,
K. M.
,
Son
,
S. W.
, and
Gyakum
,
J. R.
,
2013
, “
Intraseasonal and Interannual Variability in North American Storm Tracks and Its Relationship to Equatorial Pacific Variability
,”
Mon. Weather Rev.
,
141
(
10
), pp.
3610
3625
.
44.
Bell
,
R. J.
,
Gray
,
S. L.
, and
Jones
,
O. P.
,
2017
, “
North Atlantic Storm Driving of Extreme Wave Heights in the North Sea
,”
J. Geophys. Res. Ocean.
,
122
(
4
), pp.
3253
3268
.
45.
Gramcianinov
,
C. B.
,
Campos
,
R. M.
,
de Camargo
,
R.
,
Hodges
,
K. I.
,
Guedes Soares
,
C.
, and
da Silva Dias
,
P. L.
,
2020
, “
Atlantic Extratropical Cyclone Tracks in 41 Years of ERA5 and CFSR/CFSv2 Databases
”,
Mendeley Data,” V4. 10.17632/kwcvfr52hp.4
46.
Hodges
,
K. I.
,
1996
, “
Spherical Nonparametric Estimators Applied to the UGAMP Model Integration for AMIP
,”
Mon. Weather Rev.
,
124
(
12
), pp.
2914
2932
.
47.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Enke
,
K.
,
Ewing
,
J. A.
,
Gienapp
,
H.
,
Hasselmann
,
D. E.
,
Kruseman
,
P.
,
Meerburg
,
A.
,
Mller
,
P.
,
Olbers
,
D. J.
,
Richter
,
K.
,
Sell
,
W.
, and
Walden
,
H.
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, A(8) (Nr. 12)
, p.
95
.
48.
Ardhuin
,
F.
, and
Orfila
,
A.
,
2018
, “Wind Waves,”
New Frontiers In Operational Oceanography
,
E.
Chassignet
,
A.
Pascual
,
J.
Tintoré
, and
J.
Verron
, eds.,
GODAE OceanView
, pp.
393
422
.
49.
Browning
,
K. A.
, and
Roberts
,
N. M.
,
1994
, “
Structure of a Frontal Cyclone
,”
Q. J. R. Meteorol. Soc.
,
120
(
520
), pp.
1535
1557
.
You do not currently have access to this content.