Abstract

Design of a steel catenary riser requires the use of connection hardware to decouple the large bending moments induced by the host floater at the hang-off location. Reliability of this connection hardware is essential, particularly in applications involving high pressure and high temperature fluids. One option for this connection hardware is the metallic tapered stress joint. Titanium (Ti) Grade 29 has been identified as an attractive material candidate for demanding stress joint applications due to its “high strength, low weight, superior fatigue performance and innate corrosion resistance”.2 Titanium stress joints for deepwater applications are typically not fabricated as a single piece due to titanium ingot volume limitations, thus making an intermediate girth weld necessary to satisfy length requirements. As with steel, the potential effect of hydrogen embrittlement induced by cathodic and galvanic potentials must be assessed to ensure long-term weld integrity. This paper describes testing from a joint industry project (JIP) conducted to qualify titanium stress joint (TSJ) welds for ultra-deepwater applications under harsh service and environmental conditions. Corrosion-fatigue crack growth rate (CFCGR) results for Ti Grade 29 flat welding-groove weld (1G/PA) gas tungsten arc welding (GTAW) specimens in seawater under cathodic potential and sour brine under galvanic potential are presented and compared to vendor recommended design curves.

References

1.
Baxter
,
C.
,
Schutz
,
R.
, and
Caldwell
,
C.
, “
Experience & Guidance in the Use of Titanium Components in Steel Catenary Riser Systems
,”
Proceedings of the Offshore Technology Conference
, Paper No. OTC2007-18624,
Houston, TX
.
2.
Hudak
,
S. J.
, Jr.
,
Robledo
,
G. B.
, and
Feiger
,
J. H.
,
2014
, “
Corrosion-Fatigue of Ti 29 Alloy in a Sour Brine Environment
,”
Proceedings of the 33
rd
International Conference on Ocean, Offshore and Arctic Engineering
, Paper No. OMAE2014-23513,
San Francisco, CA
.
3.
Rombado
,
G.
,
Baker
,
D. A.
,
Kan
,
W. C.
,
Haldorsen
,
L. H.
,
Craidy
,
P.
, and
Hudak
,
S. J., Jr.
,
2016
, “
Fatigue Life Performance of Titanium Grade 29 Welds in Tapered Stress Joints
,”
Proceedings of the 26th International Society of Offshore and Polar Engineers Conference
,
Paper No. ISOPE2016-1047
,
Rhodes, Greece
.
4.
Buitrago
,
J.
,
Nissley
,
N. A.
, and
Rombado
,
G.
,
2012
, “
Verification of Fracture and Fatigue Performance of Titanium Gr. 29 Welds in Tapered Stress Joints
,”
Proceedings of the 31
st
International Conference on Ocean, Offshore and Arctic Engineering
, Paper No. OMAE2012-83696,
Rio de Janeiro, Brazil
.
5.
Schutz
,
R. W.
,
Baxter
,
C. F.
, and
Caldwell
,
C. S.
,
2010
, “
Effect of Sour Brine Environment on the S-N Fatigue Life of Grade 29 Titanium Pipe Welds
,”
NACE Corrosion and Exposition, Paper No. 10313
.
6.
Vargas
,
P.
,
Baxter
,
C.
, and
Schutz
,
R. W.
,
2011
, “
A Level 3 BS7910 ECA for a Titanium Stress Joint for Use on a High Motion Floater in the Gulf of Mexico
,”
Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
.
7.
Buitrago
,
J.
,
Weir
,
M. S.
,
Kan
,
W. C.
,
Hudak
,
S. J.
, and
McMaster
,
F.
,
2004
, “
Effect of Loading Frequency on Fatigue Performance of Risers in Sour Environment
,”
Proceedings of the 23
rd
International Conference on Ocean, Offshore and Arctic Engineering
, Paper No. OMAE2004-51641,
Vancouver, British Columbia
.
8.
Hudak
,
S. J.
, Jr.
,
Feiger
,
J. H.
, and
Patton
,
J. A.
,
2010
, “
The Effect of Cyclic Loading Frequency on Corrosion-Fatigue Crack Growth in High-Strength Riser Materials
,”
Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering
, Paper No. OMAE2010-20705,
Shanghai, Canada
.
9.
Herman
,
W. A.
,
Hertzberg
,
R. W.
, and
Jaccard
,
R.
,
1988
, “
A Simplified Laboratory Approach for Prediction of Short Crack Behavior in Engineering Structures
,”
Fatigue Eng. Mater. Struct.
,
11
(
4
), pp.
303
320
.
10.
Hertzberg
,
R.
,
Herman
,
W. A.
,
Clark
,
T.
, and
Jaccard
,
R.
,
1992
,
ASTM STP 1149
,
J. M.
Larsen
, and
J. E.
Allison
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
197
220
.
11.
Hudak
,
S. J.
, Jr.
,
1981
, “
Small Crack Behavior and the Prediction of Fatigue Life
,”
ASME J. Eng. Mater. Technol.
,
103
(
1
), pp.
26
35
.
12.
Hudak
,
S. J.
, Jr.
,
Saxena
,
A.
,
Bucci
,
R. J.
, and
Malcolm
,
R. C.
,
May 1978
, “
Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data
,”
Air Force Materials Laboratory, Technical Report No. AFML-TR-78-40
.
13.
Saxena
,
A.
,
Hudak
,
S. J.
, Jr.
,
Donald
,
J. K.
, and
Schmidt
,
D. W.
,
1978
, “
Computer-Controlled Decreasing Stress Intensity Techniques for Low Rate Fatigue Crack Growth Testing
,”
J. Test. Eval.
,
6
(
3
), pp.
167
174
.
14.
Sheldon
,
J. W.
,
Bain
,
K. R.
, and
Donald
,
J. K.
,
1999
, “
Investigation of the Effect of Shed-Rate, Initial Kmax, and Geometric Constraint on Kth in Ti-6Al-4V at Room Temperature
,”
Int. J. Fatigue
,
21
(
7
), pp.
733
741
.
15.
McClung
,
R. C.
,
2000
,
Fatigue Crack Growth Thresholds, Endurance Limits, and Design
,
J. C.
Newman
Jr.
, and
R. S.
Piascik
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
209
226
.
16.
ASTM E 647
. “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
ASTM Annual Book of Standards, Volume 03.01, ASTM, Philadelphia, PA
.
17.
Suresh
,
S.
,
Zamiski
,
G. F.
, and
Ritchie
,
R. O.
,
1981
, “
Oxide-Induced Fatigue Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior
,”
Metall. Trans.
,
12
(
8
), pp.
1435
1443
.
18.
Bartlett
,
M. L.
, and
Hudak
,
S. J.
, Jr.
,
1990
, “
The Influence of Frequency-Dependent Crack Closure on Corrosion Fatigue Crack Growth
,”
Fourth International Conference on Fatigue and Fatigue Thresholds
,
Honolulu, HI
.
19.
Suresh
,
S.
,
1991
,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge
, Chapter 7.
20.
Langøy
,
M. A.
, and
Stock
,
S. R.
,
2001
, “
Fatigue-Crack Growth in Ti-6Al-4V-0.1Ru in Air and Seawater: Part II. Crack Path and Microstructure
,”
Metall. Mater. Trans. A
,
32A
, pp.
2315
2324
.
21.
Hudak
,
S. J.
, Jr.
,
Robledo
,
G. B.
, and
Hawk
,
J.
,
2011
, “
Corrosion– Fatigue Performance of High–Strength Riser Steels in Seawater and Sour Brine Environments
,”
Proceedings of the 30
th
International Conference on Ocean, Offshore and Arctic Engineering
, Paper No. OMAE2011 − 50171,
Rotterdam, The Netherlands
.
22.
Titanium Design Guidance: Using Titanium for Touch Down Zone & Hang-Off of Steel Catenary Risers, RTI Energy Systems, Inc., Document: RTR-001, February 2005
.
You do not currently have access to this content.