Abstract

Design life of offshore structures is in general in the 20- to 30-year range, with some cases going up to 50 years. Fatigue is one of the major design criteria for such structures. Climate change may affect the fatigue life of offshore structures, it would be necessary to update the design procedures to take into account climate change effects on structural performance. This paper aims to investigate the impact of climate change in the long-term fatigue life of offshore structures due to wave loading. For this purpose, available environmental conditions for two locations (South East Brazilian Coast and North Atlantic Ocean) generated by the HadGEM-2S global climate model, considering representative concentration pathway (RCP) 4.5 and RCP 8.5 future scenarios and the historical (past) scenarios are considered. The assessment in both locations is performed for two structural models: an idealized stress spectrum for a generic fatigue hot-spot and a steel lazy wave riser (SLWR) connected to a floating production storage and offloading (FPSO). Fatigue life is estimated using the S–N curve approach. Results show that the impact on the fatigue life depends on the structure dynamic characteristics, on the geographic location and mainly on the greenhouse emission scenario. In general, for the Brazilian location, when compared to the historical scenario, most of the future scenarios lead to slightly higher fatigue damages (lower fatigue lives). On the other hand, for the North Atlantic location, there is not a clear trend for future climate change scenarios.

References

1.
Field
,
C. B.
,
2012
,
Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
New York
.
2.
Bitner-Gregersen
,
E. M.
,
Eide
,
L. I.
,
Horte
,
T.
, and
Skjong
,
R.
,
2015
,
Ship and Offshore Structure Design in Climate Change Perspective
,
Springer Nature
,
Heidelberg, Germany
.
3.
Stocker
,
T.
,
2014
,
Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,
Cambridge University Press
,
New York
.
4.
Core Writing Team
,
2014
,
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (p. 151)
,
IPCC
,
Geneva, Switzerland
.
5.
Reguero
,
B. G.
,
Losada
,
I. J.
, and
Méndez
,
F. J.
,
2019
, “
A Recent Increase in Global Wave Power as a Consequence of Oceanic Warming
,”
Nat. Commun.
,
10
(
1
), pp.
1
14
.
6.
Gulev
,
S. K.
, and
Grigorieva
,
V.
,
2006
, “
Variability of the Winter Wind Waves and Swell in the North Atlantic and North Pacific as Revealed by the Voluntary Observing Ship Data
,”
J. Clim.
,
19
(
21
), pp.
5667
5685
.
7.
Wang
,
X. L.
, and
Swail
,
V. R.
,
2006
, “
Historical and Possible Future Changes of Wave Heights in Northern Hemisphere Oceans
,”
Atmos. Ocean Interact.
,
2
(
2
), p.
240
.
8.
Young
,
I. R.
,
Zieger
,
S.
, and
Babanin
,
A. V.
,
2011
, “
Global Trends in Wind Speed and Wave Height
,”
Science
,
332
(
6028
), pp.
451
455
.
9.
Campos
,
R. M.
,
Soares
,
C. G.
,
Alves
,
J. H. G. M.
,
Parente
,
C. E.
, and
Guimaraes
,
L. G.
,
2019
, “
Regional Long-Term Extreme Wave Analysis Using Hindcast Data From the South Atlantic Ocean
,”
Ocean Eng.
,
179
, pp.
202
212
.
10.
Mosquera
,
I. A.
,
Sagrilo
,
L. V. S.
, and
Videiro
,
P. M.
,
2019, June
, “
The Impact of Climate Change on the Long-Term Response of Offshore Structures: A Study Case
,”
ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
.
11.
Hemer
,
M. A.
, and
Trenham
,
C. E.
,
2015
, “
Evaluation of a CMIP5 Derived Dynamical Global Wind Wave Climate Model Ensemble
,”
Ocean Model.
,
103
, pp.
190
203
.
12.
Solomon
,
S.
,
Manning
,
M.
,
Marquis
,
M.
, and
Qin
,
D.
,
2007
,
Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4)
,
Cambridge University Press
,
New York
.
13.
Meehl
,
G. A.
,
Covey
,
C.
,
Delworth
,
T.
,
Latif
,
M.
,
McAvaney
,
B.
,
Mitchell
,
J. F.
, and
Taylor
,
K. E.
,
2007
, “
The WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research
,”
Bull. Am. Meteorol. Soc.
,
88
(
9
), pp.
1383
1394
.
14.
Fan
,
Y.
,
Held
,
I. M.
,
Lin
,
S. J.
, and
Wang
,
X. L.
,
2013
, “
Ocean Warming Effect on Surface Gravity Wave Climate Change for the End of the Twenty-First Century
,”
J. Clim.
,
26
(
16
), pp.
6046
6066
.
15.
Mori
,
N.
,
Yasuda
,
T.
,
Mase
,
H.
,
Tom
,
T.
, and
Oku
,
Y.
,
2010
, “
Projection of Extreme Wave Climate Change Under Global Warming
,”
Hydrol. Res. Lett.
,
4
, pp.
15
14
.
16.
Vanem
,
E.
,
2016
, “
Joint Statistical Models for Significant Wave Height and Wave Period in a Changing Climate
,”
Mar. Struct.
,
49
, pp.
180
205
.
17.
Semedo
,
A.
,
Beherens
,
A.
,
Bengtsson
,
L.
,
Gunther
,
H.
,
Sterl
,
A.
, and
Weisse
,
R.
,
2011
, “
Impact of a Warmer Climate on the Global Wave Field
,”
Proceedings of the 12th International Workshop on Wave Hindcasting and Forecasting and Third Coastal Hazards Symposium
,
Kohala Coast, HI
,
Oct. 30–Nov. 4
.
18.
Hemer
,
M. A.
,
Fan
,
Y.
,
Mori
,
N.
,
Semedo
,
A.
, and
Wang
,
X. L.
,
2013
, “
Projected Changes in Wave Climate From a Multi-Model Ensemble
,”
Nat. Clim. Chang
,
3
(
5
), pp.
471
476
.
19.
Wang
,
X. L.
,
Feng
,
Y.
, and
Swail
,
V. R.
,
2014
, “
Changes in Global Ocean Wave Heights as Projected Using Multimodel CMIP5 Simulations
,”
Geophys. Res. Lett.
,
41
(
3
), pp.
1026
1034
.
20.
Caires
,
S.
,
Swail
,
V. R.
, and
Wang
,
X. L.
,
2006
, “
Projection and Analysis of Extreme Wave Climate
,”
J. Clim.
,
19
(
21
), pp.
5581
5605
.
21.
Cheng
,
L.
,
AghaKouchak
,
A.
,
Gilleland
,
E.
, and
Katz
,
R. W.
,
2014
, “
Non-stationary Extreme Value Analysis in a Changing Climate
,”
Clim. Change
,
127
(
2
), pp.
353
369
.
22.
Vanem
,
E.
,
2015
, “
Non-stationary Extreme Value Models to Account for Trends and Shifts in the Extreme Wave Climate due to Climate Change
,”
Appl. Ocean Res.
,
52
, pp.
201
211
.
23.
Katz
,
R. W.
,
2013
, “Statistical Methods for Nonstationary Extremes,”
Extremes in a Changing Climate
,
Springer
,
Dordrecht
, pp.
15
37
.
24.
Vanem
,
E.
,
Huseby
,
A. B.
, and
Natvig
,
B.
,
2012
, “
A Bayesian Hierarchical Spatio-temporal Model for Significant Wave Height in the North Atlantic
,”
Stoch. Environ. Res. Risk Assess.
,
26
(
5
), pp.
609
632
.
25.
Bitner-Gregersen
,
E. M.
,
Vanem
,
E.
,
Gramstad
,
O.
,
Hørte
,
T.
,
Aarnes
,
O. J.
,
Reistad
,
M.
, and
Natvig
,
B.
,
2017
, “
Climate Change and Safe Design of Ship Structures
,”
Ocean Eng.
,
149
, pp.
226
237
.
26.
Gramstad
,
O.
,
Bitner-Gregersen
,
E.
, and
Vanem
,
E.
,
2017, June
, “
Projected Changes in the Occurrence of Extreme and Rogue Waves in Future Climate in the North Atlantic
,”
Proceedings of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
, American Society of Mechanical Engineers Digital Collection.
27.
Guo
,
B.
,
Gramstad
,
O.
,
Vanem
,
E.
, and
Bitner-Gregersen
,
E. M.
,
2019
, “
Study on the Effect of Climate Change on Ship Responses Based on Nonlinear Simulations
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
4
), p.
041605
.
28.
Mosquera-Mosquera
,
I. A.
,
Simão
,
M. L.
,
Videiro
,
P. M.
, and
Sagrilo
,
L. V.
,
2020
, “
Evaluating the Impact of Climate Change on Offshore Structures Design: A Practical Case Study
,”
Appl. Ocean Res.
,
94
, p.
101992
.
29.
Zou
,
T.
,
Jiang
,
X.
, and
Kaminski
,
M. L.
,
2014, August
, “
Possible Solutions for Climate Change Impact on Fatigue Assessment of Floating Structures
,”
Proceedings of the Twenty-Fourth International Ocean and Polar Engineering Conference
,
Busan, South Korea
, International Society of Offshore and Polar Engineers.
30.
Zou
,
T.
, and
Kaminski
,
M. L.
,
2020
, “
Projection and Detection of Climate Change Impact on Fatigue Damage of Offshore Floating Structures Operating in Three Offshore oil Fields of the North Sea
,”
Ocean Dyn.
,
70
(
10
), pp.
1339
1354
.
31.
Du
,
J.
,
Wang
,
H.
,
Wang
,
S.
,
Song
,
X.
,
Wang
,
J.
, and
Chang
,
A.
,
2020
, “
Fatigue Damage Assessment of Mooring Lines Under the Effect of Wave Climate Change and Marine Corrosion
,”
Ocean Eng.
,
206
, p.
107303
.
32.
Hübler
,
C.
, and
Rolfes
,
R.
,
2020
, “
Analysis of the Influence of Climate Change on the Fatigue Lifetime of Offshore Wind Turbines Using Imprecise Probabilities
,”
Wind Energy
,
24
(
3
), pp.
275
289
.
33.
Wilkie
,
D.
, and
Galasso
,
C.
,
2020
, “
Impact of Climate-Change Scenarios on Offshore Wind Turbine Structural Performance
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110323
.
34.
Hirdaris
,
S. E.
,
Bai
,
W.
,
Dessi
,
D.
,
Ergin
,
A.
,
Gu
,
X.
,
Hermundstad
,
O. A.
, and
Incecik
,
A.
,
2014
, “
Loads for Use in the Design of Ships and Offshore Structures
,”
Ocean Eng.
,
78
, pp.
131
174
.
35.
DNVGL-OS-F201
,
2010
,
Offshore Standard: Dynamic Risers
,
DNV
,
Hovik, Norway
.
36.
DNVGL-RP-C203
,
2020
,
Recommended Practice: Fatigue Design of Offshore Steel Structures
,
DNV
,
Hovik, Norway
.
37.
Dirlik
,
T.
,
1985
, “
Application of Computers in Fatigue Analysis
,”
Doctoral thesis
,
University of Warwick
,
England
.
38.
Jiao
,
G.
, and
Moan
,
T.
,
1990
, “
Probabilistic Analysis of Fatigue due to Gaussian Load Processes
,”
Probabilistic Eng. Mech.
,
5
(
2
), pp.
76
83
.
39.
Giraldo
,
J. S. M.
,
2014
, “
Efficient Methods for Probabilistic Fatigue Analysis of Marine Structures
,”
M.Sc. dissertation
,
Department of Civil Engineering, COPPE/UFRJ
,
Rio de Janeiro, Brazil
.
40.
Bellouin
,
N.
,
Collins
,
W. J.
,
Culverwell
,
I. D.
,
Halloran
,
P. R.
,
Hardiman
,
S. C.
,
Hinton
,
T. J.
, and
Roberts
,
M. J.
,
2011
, “
The HadGEM2 Family of Met Office Unified Model Climate Configurations
,”
Geosci. Model Dev.
,
4
(
3
), pp.
723
757
.
41.
DNVGL-RP-C205
,
2020
,
Environmental Conditions and Environmental Loads
,
DNV
,
Høvik, Norway
.
42.
Mosquera-Mosquera
,
I. A.
,
2020
, “
Long-Term Response of Offshore Structures Under Climate Change Conditions
,”
D.Sc. thesis
,
Universidade Federal do Rio de Janeiro
,
Rio de Janeiro, Brazil
.
43.
Monsalve-Giraldo
,
J. S.
,
Videiro
,
P. M.
,
de Sousa
,
F. M.
,
dos Santos
,
C. M. P. M.
, and
Sagrilo
,
L. V. S.
,
2019
, “
Parametric Interpolation Method for Probabilistic Fatigue Analysis of Steel Risers
,”
Appl. Ocean Res.
,
90
, p.
101838
.
44.
Matsuishi
,
M.
, and
Endo
,
T.
,
1968
, “
Fatigue of Metals Subjected to Varying Stress
,”
Jpn. Soc. Mech. Eng.
,
68
(
2
), pp.
37
40
.
45.
Scoccimarro
,
E.
,
Gualdi
,
S.
,
Bellucci
,
A.
,
Sanna
,
A.
,
Fogli
,
P. G.
,
Manzini
,
E.
,
Vichi
,
M.
,
Oddo
,
P.
, and
Navarra
,
A.
,
2011
, “
Effects of Tropical Cyclones on Ocean Heat Transport in a High Resolution Coupled General Circulation Model
,”
J. Clim.
,
24
(
16
), pp.
4368
4384
.
46.
DNVGL-RP-F205
,
2020
,
Recommended Practice: Global Performance Analysis of Deepwater Floating Structure
,
DNV
,
Høvik, Norway
.
47.
NORSOK
,
2017
,
Standard N-003: Action and Action Effects. Rev03
,
Standards Norway
,
Lysaker, Norway
.
You do not currently have access to this content.