Abstract

We perform simulations of random seas based on narrow-banded spectra with directional spreading. Our wavefields are spatially homogeneous and nonstationary in time. We truncate the spectral tail for the initial conditions at different cutoff wavenumbers to assess the impact of the spectral tail on the kurtosis and spectral evolution. We consider two cases based on truncation of the wavenumber tail at |k|/kp=2.4 and |k|/kp=6. Our simulations indicate that the peak kurtosis value increases if the tail is truncated at |k|/kp=2.4 rather than |k|/kp=6. For the case with a wavenumber cutoff at |k|/kp=2.4, augmented kurtosis is accompanied by comparatively more aggressive spectral changes including redevelopment of the spectral tail. Similar trends are observed for the case with a wavenumber cutoff at |k|/kp=6, but the spectral changes are less substantial. Thus, the spectral tail appears to play an important role in a form of spectral equilibrium that reduces spectral changes and decreases the peak kurtosis value. Our findings suggest that care should be taken when truncating the spectral tail for the purpose of simulations/experiments. We also find that the equation of Fedele (2015, “On the Kurtosis of Deep-Water Gravity Waves,” J. Fluid Mech., 782, pp. 25–36) provides an excellent estimate of the peak kurtosis value. However, the bandwidth parameter must account for the spectral tail to provide accurate estimates of the peak kurtosis.

References

1.
Fedele
,
F.
,
Brennan
,
J.
,
De León
,
S. P.
,
Dudley
,
J.
, and
Dias
,
F.
,
2016
, “
Real World Ocean Rogue Waves Explained Without the Modulational Instability
,”
Sci. Rep.
,
6
, p.
27715
.
2.
Janssen
,
P. A. E. M.
,
2003
, “
Nonlinear Four-Wave Interactions and Freak Waves
,”
J. Phys. Oceanogr.
,
33
, pp.
863
884
.
3.
Kharif
,
C.
, and
Pelinovsky
,
E.
,
2003
, “
Physical Mechanisms of the Rogue Wave Phenomenon
,”
Eur. J. Mech. B/Fluids
,
22
, pp.
603
634
.
4.
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Slunyaev
,
A.
,
2008
,
Rogue Waves in the Ocean
,
Springer Science & Business Media
, Berlin, Germany.
5.
Dysthe
,
K.
,
Krogstad
,
H. E.
, and
Müller
,
P.
,
2008
, “
Oceanic Rogue Waves
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
287
310
.
6.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2014
, “
The Physics of Anomalous (‘Rogue’) Ocean Waves
,”
Rep. Prog. Phys.
,
77
, p.
105901
.
7.
Mori
,
N.
, and
Janssen
,
P. A. E. M.
,
2006
, “
On Kurtosis and Occurrence Probability of Freak Waves
,”
J. Phys. Oceanogr.
,
36
(
7
), pp.
1471
1483
.
8.
Dalzell
,
J. F.
,
1999
, “
A Note on Finite Depth Second-Order Wave–Wave Interactions
,”
Appl. Ocean Res.
,
21
(
3
), pp.
105
111
.
9.
Madsen
,
P. A.
, and
Fuhrman
,
D. R.
,
2012
, “
Third-Order Theory for Multi-directional Irregular Waves
,”
J. Fluid Mech.
,
698
, pp.
304
334
.
10.
Fedele
,
F.
,
2015
, “
On the Kurtosis of Deep-Water Gravity Waves
,”
J. Fluid Mech.
,
782
, pp.
25
36
.
11.
Janssen
,
P. A. E. M.
, and
Bidlot
,
J. R.
,
2009
, “
On the Extension of the Freak Wave Warning System and Its Verification
,”
ECMWF Tech. Mem.
588. ECMWF.
12.
Mori
,
N.
,
Onorato
,
M.
, and
Janssen
,
P. A. E. M.
,
2011
, “
On the Estimation of the Kurtosis in Directional Sea States for Freak Wave Forecasting
,”
J. Phys. Oceanogr.
,
41
(
8
), pp.
1484
1497
.
13.
Onorato
,
M.
,
Cavaleri
,
L.
,
Fouques
,
S.
,
Gramstad
,
O.
,
Janssen
,
P. A.
,
Monbaliu
,
J.
,
Osborne
,
A. R.
,
Packozdi
,
C.
,
Serio
,
M.
,
Stansberg
,
C. T.
, and
Toffoli
,
A.
,
2009
, “
Statistical Properties of Mechanically Generated Surface Gravity Waves: A Laboratory Experiment in a Three-Dimensional Wave Basin
,”
J. Fluid Mech.
,
627
, pp.
235
257
.
14.
Toffoli
,
A.
,
Gramstad
,
O.
,
Trulsen
,
K.
,
Monbaliu
,
J.
,
Bitner-Gregersen
,
E.
, and
Onorato
,
M.
,
2010
, “
Evolution of Weakly Nonlinear Random Directional Waves: Laboratory Experiments and Numerical Simulations
,”
J. Fluid Mech.
,
664
, p.
313
.
15.
Xiao
,
W.
,
Liu
,
Y.
,
Wu
,
G.
, and
Yue
,
D. K.
,
2013
, “
Rogue Wave Occurrence and Dynamics by Direct Simulations of Nonlinear Wave-Field Evolution
,”
J. Fluid Mech.
,
720
, p.
357
.
16.
Trulsen
,
K.
,
Kliakhandler
,
I.
,
Dysthe
,
K. B.
, and
Velarde
,
M. G.
,
2000
, “
On Weakly Nonlinear Modulation of Waves on Deep Water
,”
Phys. Fluids
,
12
(
10
), pp.
2432
2437
.
17.
Trulsen
,
K.
,
2018
, “Rogue Waves in the Ocean, the Role of Modulational Instability, and Abrupt Changes of Environmental Conditions that Can Provoke Non Equilibrium Wave Dynamics,”
The Ocean in Motion
, M. Velarde, R. Tarakanov, and A. Marchenko, eds.,
Springer Oceanography
, Springer AG.
18.
Waseda
,
T.
,
Toba
,
Y.
, and
Tulin
,
M. P.
,
2001
, “
Adjustment of Wind Waves to Sudden Changes of Wind Speed
,”
J. Oceanogr.
,
57
, pp.
519
533
.
19.
Viotti
,
C.
, and
Dias
,
F.
,
2014
, “
Extreme Waves Induced by Strong Depth Transitions: Fully Nonlinear Results
,”
Phys. Fluids
,
26
(
5
), p.
051705
.
20.
Rapizo
,
H.
,
Waseda
,
T.
,
Babanin
,
A. V.
, and
Toffoli
,
A.
,
2016
, “
Laboratory Experiments on the Effects of a Variable Current Field on the Spectral Geometry of Water Waves
,”
J. Phys. Oceanogr.
,
46
(
9
), pp.
2695
2717
.
21.
Barratt
,
D.
,
Bingham
,
H. B.
,
Taylor
,
P. H.
,
Van Den Bremer
,
T. S.
, and
Adcock
,
T. A. A.
,
2021
, “
Rapid Spectral Evolution of Steep Surface Wave Groups With Directional Spreading
,”
J. Fluid Mech.
,
907
, p.
A30
.
22.
Waseda
,
T.
,
Kinoshita
,
T.
,
Cavaleri
,
L.
, and
Toffoli
,
A.
,
2015
, “
Third-Order Resonant Wave Interactions Under the Influence of Background Current Fields
,”
J. Fluid Mech.
,
784
, pp.
51
73
.
23.
Toffoli
,
A.
,
Bennetts
,
L. G.
,
Meylan
,
M. H.
,
Cavaliere
,
C.
,
Alberello
,
A.
,
Elsnab
,
J.
, and
Monty
,
J. P.
,
2015
, “
Sea Ice Floes Dissipate the Energy of Steep Ocean Waves
,”
Geophys. Res. Lett.
,
42
(
20
), pp.
8547
8554
.
24.
Meylan
,
M. H.
,
Bennetts
,
L. G.
,
Mosig
,
J. E. M.
,
Rogers
,
W. E.
,
Doble
,
M. J.
, and
Peter
,
M. A.
,
2018
, “
Dispersion Relations, Power Laws, and Energy Loss for Waves in the Marginal Ice Zone
,”
J. Geophys. Res.
,
123
(
5
), pp.
3322
3335
.
25.
Dysthe
,
K. B.
,
Trulsen
,
K.
,
Krogstad
,
H. E.
, and
Socquet-juglard
,
H.
,
2003
, “
Evolution of a Narrow-band Spectrum of Random Surface Gravity Waves
,”
J. Fluid Mech.
,
478
, pp.
1
10
.
26.
Osborne
,
A.
,
2010
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
,
Academic Press
,
New York
.
27.
Trulsen
,
K.
, and
Dysthe
,
K. B.
,
1996
, “
A Modified Nonlinear Schrödinger Equation for Broader Bandwidth Gravity Waves on Deep Water
,”
Wave Motion
,
24
(
3
), pp.
281
289
.
28.
Martin
,
D. U.
, and
Yuen
,
H. C.
,
1980
, “
Quasi-Recurring Energy Leakage in the Two-Space-Dimensional Nonlinear Schrödinger Equation
,”
Phys. Fluids
,
23
, pp.
881
883
.
29.
Yuen
,
H. C.
, and
Lake
,
B. M.
,
1980
, “
Instabilities of Waves on Deep Water
,”
Ann. Rev. Fluid Mech.
,
12
, pp.
303
334
.
30.
Barratt
,
D.
, and
Adcock
,
T. A. A.
,
2021
, “
MNLS Simulations of Surface Wave Groups With Directional Spreading in Deep and Finite Depth Waters
,”
J. Ocean Eng. Mar. Energy
,
7
, pp.
1
15
.
31.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2016
, “
Fast and Local Non-linear Evolution of Steep Wave-Groups on Deep Water: A Comparison of Approximate Models to Fully Non-Linear Simulations
,”
Phys. Fluids.
,
28
(
1
), p.
016601
.
32.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2016
, “
Non-linear Evolution of Uni-directional Focussed Wave-groups on a Deep Water: A Comparison of Models
,”
Appl. Ocean. Res.
,
59
, pp.
147
152
.
33.
Janssen
,
P. A. E. M.
,
1983
, “
On a Fourth-Order Envelope Equation for Deep-Water Waves
,”
J. Fluid Mech.
,
126
, pp.
1
11
.
34.
Zakharov
,
V. E..
, and
Shabat
,
A. B.
,
1972
, “
Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media
,”
Soviet Phys. JETP
,
34
, pp.
62
69
.
35.
Serio
,
M.
,
Onorato
,
M.
,
Osborne
,
A. R.
, and
Janssen
,
P. A.
,
2005
, “
On the Computation of the Benjamin-Feir Index
,”
Nuovo Cimento
,
28
(
6
), pp.
893
903
.
36.
Young
,
I. R.
,
1995
, “
The Determination of Confidence Limits Associated With Estimates of the Spectral Peak Frequency
,”
Ocean Eng.
,
22
(
7
), pp.
669
686
.
37.
Goda
,
Y.
,
1985
,
Random Seas and Design of Marine Structures
,
University of Tokyo Press
, Tokyo, Japan, p.
239
.
You do not currently have access to this content.