Abstract

From a mathematical viewpoint, the frequency domain analysis of vessel motion responses due to wave actions is based on integration of system dynamics idealized in terms of response amplitude operators for six degrees-of-freedom (DOFs) rigid body motions and an input wave spectrum in order to obtain the response spectrum. Various quantities of interest can be deduced from the response spectrum, which are then used for deriving response-based operational limits for marine operations, also including extreme value and fatigue analysis. The variation of such quantities, owing to the uncertainties associated with the vessel system parameters, can be quantified by performing uncertainty propagation and consequent sensitivity analysis. This study emphasizes and proposes a computational-efficient way of assessing the sensitivity of the system model output with respect to the uncertainties residing in the input parameters by operating on a surrogate model representation. In this respect, the global sensitivity analysis was effectively carried out by deploying an efficient nonintrusive polynomial chaos expansion surrogate model built using a point collocation strategy. Successively, Sobol’ indices were obtained from the analytical decomposition of the polynomial coefficients. The indices, eventually, are employed to quantitatively measure the effects of input uncertainties on the output 6DOF vessel root-mean-square responses.

References

1.
Edition
,
F.
,
Journée
,
J.
, and
Massie
,
W.
,
2001
,
Offshore Hydromechanics
,
Delft University of Technology
,
Delft, Netherlands
.
2.
Campanelli
,
M.
,
Kacker
,
R.
, and
Kessel
,
R.
,
2013
, “
Variance Gradients and Uncertainty Budgets for Nonlinear Measurement Functions With Independent Inputs
,”
Meas. Sci. Technol.
,
24
(
2
), p.
025002
.
3.
Marelli
,
S.
,
Lamas
,
C.
,
Konakli
,
K.
,
Mylonas
,
C.
,
Wiederkehr
,
P.
, and
Sudret
,
B.
,
2013
, “UQLab User Manual–Sensitivity Analysis,” Report UQLab-V1, pp.
2
106
.
4.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
5.
Blatman
,
G.
,
2009
,
Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis
,
Université Blaise Pascal-Clermont-Ferrand II
,
Clermont-Ferrand, France
.
6.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.
7.
Deman
,
G.
,
Konakli
,
K.
,
Sudret
,
B.
,
Kerrou
,
J.
,
Perrochet
,
P.
, and
Benabderrahmane
,
H.
,
2016
, “
Using Sparse Polynomial Chaos Expansions for the Global Sensitivity Analysis of Groundwater Lifetime Expectancy in a Multi-Layered Hydrogeological Model
,”
Reliab. Eng. Syst. Saf.
,
147
, pp.
156
169
.
8.
Mai
,
C. V.
,
2016
,
Polynomial Chaos Expansions for Uncertain Dynamical Systems—Applications in Earthquake Engineering
,
ETH Zurich
,
Zurich, Switzerland
.
9.
Torre
,
E.
,
Marelli
,
S.
,
Embrechts
,
P.
, and
Sudret
,
B.
,
2019
, “
A General Framework for Data-Driven Uncertainty Quantification Under Complex Input Dependencies Using Vine Copulas
,”
Probabilistic Eng. Mech.
,
55
, pp.
1
16
.
10.
Sauder
,
T.
,
2018
,
Fidelity of Cyber-Physical Empirical Methods – Application to the Active Truncation of Slender Marine Structures
,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
11.
Ni
,
P.
,
Li
,
J.
,
Hao
,
H.
, and
Xia
,
Y.
,
2018
, “
Stochastic Dynamic Analysis of Marine Risers Considering Gaussian System Uncertainties
,”
J. Sound Vib.
,
416
, pp.
224
243
.
12.
Moura Paredes
,
G.
,
Eskilsson
,
C.
, and
Engsig-Karup
,
A. P.
,
2020
, “
Uncertainty Quantification in Mooring Cable Dynamics Using Polynomial Chaos Expansions
,”
J. Marin. Sci. Eng.
,
8
(
3
), p.
162
.
13.
Wei
,
X.
,
Chang
,
H.
,
Feng
,
B.
, and
Liu
,
Z.
,
2019
, “
Sensitivity Analysis Based on Polynomial Chaos Expansions and Its Application in Ship Uncertainty-Based Design Optimization
,”
Math. Prob. Eng.
,
2019
, pp.
1
19
.
14.
Hersbach
,
H.
,
Bell
,
B.
,
Berrisford
,
P.
,
Hirahara
,
S.
,
Horányi
,
A.
,
Muñoz-Sabater
,
J.
,
Nicolas
,
J.
, et al
,
2020
, “
The ERA5 Global Reanalysis
,”
Q. J. R. Metereol. Soc.
,
146
(
730
), pp.
1999
2049
.
15.
Han
,
X.
,
Sævik
,
S.
, and
Leira
,
B. J.
,
2020
, “
A Sensitivity Study of Vessel Hydrodynamic Model Parameters
,”
Int. Conf. Offshore Mech. Arctic Eng.
,
84317
, p.
V001T01A039
. American Society of Mechanical Engineers.
16.
DNG-GL
,
2010
,
Recommended Practice DNV-RP-C205: Environmental Conditions and Environmental Loads
,
DNV
,
Norway
.
17.
Hughes
,
D. S. A.
,
1985
,
Directional Wave Spectra Using Cosine-Squared and Cosine 2s Spreading Functions
,
Coastal Engineering Technical Note. Coastal Engineering Research Center, Coastal and Hydraulics Laboratory
,
Vicksburg, MS
.
18.
WamdiGroup
,
1988
, “
The WAM Model—A Third Generation Ocean Wave Prediction Model
,”
J. Phys. Oceanogr.
,
18
(
12
), pp.
1775
1810
.
19.
Saltelli
,
A.
,
Ratto
,
M.
,
Anders
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, et al
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
20.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.
21.
Caniou
,
Y.
,
2012
,
Global Sensitivity Analysis for Nested and Multiscale Modelling
,
Université Blaise Pascal-Clermont-Ferrand II
,
Clermont-Ferrand, France
.
22.
Radhakrishnan
,
G.
,
Han
,
X.
,
Leira
,
B. J.
,
Gao
,
Z.
, and
Sævik
,
S.
,
2023
, “
Calibration of High-Fidelity Hydrodynamic Models Utilizing On-Site Vessel Response Measurements
,”
Ocean Eng.
,
278
, p.
114076
.
You do not currently have access to this content.