Abstract

The majority of the world’s wind resources are located in water depths that exceed 60 m, making the use of bottom-mounted structures both difficult and expensive. Consequently, the complexity of the dynamics between the floating structures and turbines has led to an increase in the number of studies on floating offshore wind turbine (FOWT) solutions. Designing optimal mooring arrangements for large-scale FOWT is currently a significant challenge. A metaheuristic solution is advised for the resolution of a complex optimization problem, such as the mooring configuration of a floating wind turbine. The evolutionary algorithms are among these, and they employ mechanisms that are inspired by biological evolution. The genetic algorithm (GA) is a multi-objective search and optimization algorithm that is derived from Darwin’s theory of evolution. It is classified as an evolutionary algorithm. It integrates the concept of survival of the fittest with the principle of randomized information exchange. According to the literature, hydrostatic and frequency-domain models are frequently applied in conjunction with multi-objective optimization algorithms, including the GA, for the purpose of optimizing FOWT. However, these models are less precise than time-domain models. The objective of this study is to optimize the mooring system of a FOWT through the use of time-domain simulations in OpenFAST. An in-house code is created to perform OpenFAST calculations and employ GA to determine the most optimal mooring arrangements for specific design variables that satisfy predefined multi-objectives while adhering to all specific constraints for the FOWT. Lastly, the optimized configurations are compared to the accidental limit state (ALS) and ultimate limit state (ULS) for the mooring system in a damaged state. The UMaine VolturnUS-S semisubmersible platform is optimized using the newly devised process to optimize power quality and reduce line costs.

References

1.
IEA
,
2024
, “
World Energy Investment 2024
,” IEA.
2.
IRENA
,
2019
, “
Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects (A Global Energy Transformation Paper)
,” International Renewable Energy Agency, Abu Dhabi.
3.
GWEC
,
2016
, “
Global Wind Energy Outlook
,” Global Wind Energy Council (GWEC).
4.
Spearman
,
D.
,
Strivens
,
S.
,
Matha
,
D.
,
Cosack
,
N.
,
Macleay
,
A.
,
Regelink
,
J.
,
Patel
,
D.
, and
Walsh
,
T.
,
2020
, “
Floating Wind Joint Industry Project—Phase II Summary Report
,” The Carbon Trust, London.
5.
Gkeka-Serpetsidaki
,
P.
,
Papadopoulos
,
S.
, and
Tsoutsos
,
T.
,
2022
, “
Assessment of the Visual Impact of Offshore Wind Farms
,”
Renew. Energy
,
190
, pp.
358
370
.
6.
Hannon
,
M.
,
Topham
,
E.
,
Dixon
,
J.
,
McMillan
,
D.
, and
Collu
,
M
,
2019
,
Offshore Wind, Ready to Float? Global and UK Trends in the Floating Offshore Wind Market
,
University of Strathclyde
,
Glasgow
.
7.
Timmington
,
D.
,
2022
,
Mooring Systems for Floating Offshore Wind: Integrity Management Concepts, Risks and Mitigation
,
World Forum Offshore Wind e.V.
,
Hamburg, Germany
.
8.
ABS Group
,
2021
, “
Floating Offshore Wind Turbine Development Assessment
,” Tech. Rep. BOEM 2021-030.
9.
Sykes
,
V.
,
Collu
,
M.
, and
Coraddu
,
A.
,
2023
, “
A Review and Analysis of Optimisation Techniques Applied to Floating Offshore Wind Platforms
,”
Ocean Eng.
,
285
, p.
115247
.
10.
Kausche
,
M.
,
Adam
,
F.
,
Dahlhaus
,
F.
, and
Großmann
,
J.
,
2018
, “
Floating Offshore Wind—Economic and Ecological Challenges of a TLP Solution
,”
Renew. Energy
,
126
, pp.
270
280
.
11.
Maienza
,
C.
,
Avossa
,
A.
,
Ricciardelli
,
F.
,
Coiro
,
D.
,
Troise
,
G.
, and
Georgakis
,
C. T.
,
2020
, “
A Life Cycle Cost Model for Floating Offshore Wind Farms
,”
Appl. Energy
,
266
, p.
114716
.
12.
Maali Amiri
,
M.
,
Shadman
,
M.
, and
Estefen
,
S. F.
,
2024
, “
A Review of Numerical and Physical Methods for Analyzing the Coupled Hydro-aero-Structural Dynamics of Floating Wind Turbine Systems
,”
J. Marine Sci. Eng.
,
12
(
3
), p.
392
.
13.
Hopstad
,
A. L. H.
,
Argyriadis
,
K.
,
Manjock
,
A.
,
Goldsmith
,
J.
, and
Ronold
,
K. O.
,
2018
, “
DNV GL Standard for Floating Wind Turbines
,”
IOWTC - International Offshore Wind Technical Conference
,
San Francisco, CA
,
Nov. 4–7
,
p. V001T01A020
.
14.
West
,
W. M.
,
2022
, “
Optimization of Synthetic Mooring Systems for Floating Offshore Wind Turbines
,” Doctor Dissertation, University of Maine.
15.
Pham
,
H.-D.
,
Cartraud
,
P.
,
Schoefs
,
F.
,
Soulard
,
T.
, and
Berhault
,
C.
,
2019
, “
Dynamic Modeling of Nylon Mooring Lines for a Floating Wind Turbine
,”
Appl. Ocean Res.
,
87
, pp.
1
8
.
16.
Utsunomiya
,
T.
,
Sato
,
I.
, and
Tanaka
,
K.
,
2019
, “
At-Sea Experiment on Durability and Residual Strength of Polyester Rope for Mooring of Floating Wind Turbine
,”
International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
,
p. V009T13A017
.
17.
Verde
,
S.
, and
Lages
,
E. N.
,
2023
, “
A Comparison of Anchor Loads, Planar Displacement, and Rotation for Nylon and Polyester Moored Systems for a 15 MW Floating Wind Turbine in Shallow Water
,”
Ocean Eng.
,
280
, p.
114404
.
18.
Weller
,
S.
,
Johanning
,
L.
,
Davies
,
P.
, and
Banfield
,
S.
,
2015
, “
Synthetic Mooring Ropes for Marine Renewable Energy Applications
,”
Renew. Energy
,
83
, pp.
1268
1278
.
19.
Ma
,
K.-T.
,
Luo
,
Y.
,
Kwan
,
C.-T. T.
, and
Wu
,
Y.
,
2019
,
Mooring System Engineering for Offshore Structures
,
Gulf Professional Publishing
,
Cambridge, MA
.
20.
Carbon-Trust
,
2018
,
Floating Wind Joint Industry Project, Phase I Summary Report, Key Findings From Electrical Systems, Mooring Systems and Infrastructures and Logistics Studies.
.
21.
Xu
,
K.
,
Larsen
,
K.
,
Shao
,
Y.
,
Zhang
,
M.
,
Gao
,
Z.
, and
Moan
,
T.
,
2021
, “
Design and Comparative Analysis of Alternative Mooring Systems for Floating Wind Turbines in Shallow Water With Emphasis on Ultimate Limit State Design
,”
Ocean Eng.
,
219
, p.
108377
.
22.
Hordvik
,
T.
,
2011
, “
Design Analysis and Optimisation of Mooring System for Floating Wind Turbines
,” Master Thesis, NTNU, Norwegian University of Science and Technology.
23.
Tran
,
T. T.
, and
Kim
,
D. -H.
,
2015
, “
The Coupled Dynamic Response Computation for a Semi-submersible Platform of Floating Offshore Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
104
119
.
24.
Bruinsma
,
N.
,
Paulsen
,
B.
, and
Jacobsen
,
N.
,
2018
, “
Validation and Application of a Fully Nonlinear Numerical Wave Tank for Simulating Floating Offshore Wind Turbines
,”
Ocean Eng.
,
147
, pp.
647
658
.
25.
Burmester
,
S.
,
Vaz
,
G.
, and
Gueydon
,
S.
,
2020
, “
Investigation of a Semi-submersible Floating Wind Turbine in Surge Decay Using CFD
,”
Ship Technol. Res.
,
67
(
1
), pp.
2
14
.
26.
Davidson
,
J.
, and
Ringwood
,
J. V.
,
2017
, “
Mathematical Modelling of Mooring Systems for Wave Energy Converters—A Review
,”
Energies
,
10
(
5
), p.
666
.
27.
Matha
,
D.
,
Cruz
,
J.
,
Masciola
,
M.
,
Bachynski
,
E. E.
,
Atcheson
,
M.
,
Goupee
,
A. J.
,
Gueydon
,
S. M.
, and
Robertson
,
A. N.
,
2016
,
Modelling of Floating Offshore Wind Technologies
,
J.
Cruz
and
M.
Atcheson
, eds.,
Springer, Cham
, pp.
133
240
.
28.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
,
Qvist
,
J.
,
Vittori
,
F.
,
Azcona
,
J.
,
Uzunoglu
,
E.
, and
Soares
,
C. G.
,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
, pp.
38
57
.
29.
Faraggiana
,
E.
,
Giorgi
,
G.
,
Sirigu
,
M.
,
Ghigo
,
A.
,
Bracco
,
G.
, and
Mattiazzo
,
G.
,
2022
, “
A Review of Numerical Modelling and Optimisation of the Floating Support Structure for Offshore Wind Turbines
,”
J. Ocean Eng. Marine Energy
,
8
(
3
), pp.
433
456
.
30.
Lemmer
,
F.
,
Yu
,
W.
,
Müller
,
K.
, and
Cheng
,
P. W.
,
2020
, “
Semi-submersible Wind Turbine Hull Shape Design for a Favorable System Response Behavior
,”
Marine Struct.
,
71
, p.
102725
.
31.
Ghigo
,
A.
,
Cottura
,
L.
,
Caradonna
,
R.
,
Bracco
,
G.
, and
Mattiazzo
,
G.
,
2020
, “
Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm
,”
J. Marine Sci. Eng.
,
8
(
11
), p.
835
.
32.
Karimi
,
M.
,
Hall
,
M.
,
Buckham
,
B.
, and
Crawford
,
C.
,
2017
, “
A Multi-objective Design Optimization Approach for Floating Offshore Wind Turbine Support Structures
,”
J. Ocean Eng. Marine Energy
,
3
, pp.
69
87
.
33.
Hall
,
M.
,
Buckham
,
B.
, and
Crawford
,
C.
,
2013
, “
Evolving Offshore Wind: A Genetic Algorithm-Based Support Structure Optimization Framework for Floating Wind Turbines
,”
2013 MTS/IEEE OCEANS
,
Bergen, Norway
,
June 10–14
. .
34.
Hall
,
M.
,
Housner
,
S.
,
Zalkind
,
D.
,
Bortolotti
,
P.
,
Ogden
,
D.
, and
Barter
,
G.
,
2022
, “
An Open-Source Frequency-Domain Model for Floating Wind Turbine Design Optimization
,”
J. Phys.: Conf. Ser.
,
2265
, p.
042020
.
35.
Dou
,
S.
,
Pegalajar-Jurado
,
A.
,
Wang
,
S.
,
Bredmose
,
H.
, and
Stolpe
,
M.
,
2020
, “
Optimization of Floating Wind Turbine Support Structures Using Frequency-Domain Analysis and Analytical Gradients
,”
J. Phys.: Conf. Ser.
,
1618
, p.
042028
.
36.
Pollini
,
N.
,
Pegalajar-Jurado
,
A.
, and
Bredmose
,
H.
,
2023
, “
Design Optimization of a TetraSpar-type Floater and Tower for the IEA Wind 15 MW Reference Wind Turbine
,”
Marine Struct.
,
90
, p.
103437
.
37.
Ferri
,
G.
,
Marino
,
E.
,
Bruschi
,
N.
, and
Borri
,
C.
,
2022
, “
Platform and Mooring System Optimization of a 10 MW Semisubmersible Offshore Wind Turbine
,”
Renew. Energy
,
182
, pp.
1152
1170
.
38.
Ferri
,
G.
,
Marino
,
E.
, and
Borri
,
C.
,
2020
, “
Optimal Dimensions of a Semisubmersible Floating Platform for a 10 MW Wind Turbine
,”
Energies
,
13
(
12
), p.
3092
.
39.
Hegseth
,
J. M.
,
Bachynski
,
E. E.
, and
Martins
,
J. R.
,
2020
, “
Integrated Design Optimization of Spar Floating Wind Turbines
,”
Marine Struct.
,
72
, p.
102771
.
40.
Pillai
,
A. C.
,
Thies
,
P. R.
, and
Johanning
,
L.
,
2019
, “
Mooring System Design Optimization Using a Surrogate Assisted Multi-objective Genetic Algorithm
,”
Eng. Optim.
,
51
(
8
), pp.
1370
1392
.
41.
Jonkman
,
J.
, and
Buhl Jr
,
M.
,
2005
,
FAST User’s Guide
, Vol. 365,
National Renewable Energy Laboratory
,
Golden, CO
.
42.
Pillai
,
A.
,
Thies
,
P. R.
, and
Johanning
,
L.
,
2017
, “
Multi-Objective Optimization of Mooring Systemsfor Offshore Renewable Energy
,”
EWTEC - European Wave and Tidal Energy Conference
,
Cork, Ireland
,
August
.
43.
Machado
,
L. d. V.
, and
Fernandes
,
A. C.
,
2022
, “
Dimensions and Position Optimization With Genetic Algorithm of a Drillship in Random Seas
,”
Ocean Eng.
,
247
, p.
110561
.
44.
Ekweoba
,
C.
,
El Montoya
,
D.
,
Galera
,
L.
,
Costa
,
S.
,
Thomas
,
S.
,
Savin
,
A.
, and
Temiz
,
I.
,
2024
, “
Geometry Optimization of a Floating Platform With an Integrated System of Wave Energy Converters Using a Genetic Algorithm
,”
Renew. Energy
,
231
, p.
120869
.
45.
Zeng
,
X.
,
Wang
,
Q.
,
Kang
,
Y.
, and
Yu
,
F.
,
2022
, “
Hydrodynamic Interactions Among Wave Energy Converter Array and a Hierarchical Genetic Algorithm for Layout Optimization
,”
Ocean Eng.
,
256
, p.
111521
.
46.
Chen
,
X.
,
Yu
,
L.
,
Liu
,
L. Y.
,
Yang
,
L.
,
Xu
,
S.
, and
Wu
,
J.
,
2023
, “
Multi-Objective Shape Optimization of Autonomous Underwater Vehicle by Coupling CFD Simulation With Genetic Algorithm
,”
Ocean Eng.
,
286
(
Part 2
), p.
115722
.
47.
Lv
,
J.
,
Liu
,
J.
,
Zhang
,
Y.
, and
Liu
,
J.
,
2024
, “
Optimization Design of Forebody Shape of an Underwater Axisymmetric Body for Transition Delay Using a Genetic Algorithm
,”
Ocean Eng.
,
301
, p.
117529
.
48.
Zhang
,
Q.
,
Cai
,
X.
,
Zhong
,
Y.
,
Tang
,
X.
, and
Wang
,
T.
,
2024
, “
Dynamic Response Prediction of High-Speed Train on Cable-Stayed Bridge Based on Genetic Algorithm and Fused Neural Networks
,”
Eng. Struct.
,
306
, p.
117869
.
49.
Kirchner-Bossi
,
N.
, and
Porté-Agel
,
F.
,
2024
, “
Wind Farm Power Density Optimization According to the Area Size Using a Novel Self-adaptive Genetic Algorithm
,”
Renew. Energy
,
220
, p.
119524
.
50.
Allen
,
C.
,
Viselli
,
A.
,
Goupee
,
H. D. A.
,
Gaertner
,
E.
,
Abbas
,
N.
,
Hall
,
M.
, and
Barter
,
G
,
2020
,
Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine
,
National Renewable Energy Lab. (NREL), University of Maine
,
Orono, ME
.
51.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
The MIT Press
,
Cambridge, MA
.
52.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley Professional
,
Boston, MA
.
53.
Lee
,
H.
, and
Lee
,
D.-J.
,
2019
, “
Effects of Platform Motions on Aerodynamic Performance and Unsteady Wake Evolution of a Floating Offshore Wind Turbine
,”
Renew. Energy
,
143
, pp.
9
23
.
54.
Shaler
,
K.
,
Branlard
,
E.
,
Platt
,
A.
, and
Jonkman
,
J.
,
2020
, “
Preliminary Introduction of a Free Vortex Wake Method Into OpenFAST
,”
J. Phys.: Conf. Ser.
,
1452
, p.
012064
.
55.
Duarte
,
T. M.
,
Sarmento
,
A. J.
, and
Jonkman
,
J. M.
,
2014
, “
Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines
,”
AIAA SciTech 2014
,
National Harbor, MD
,
Jan. 13‒17
.
56.
Cao
,
Q.
,
Xiao
,
L.
,
Guo
,
X.
, and
Liu
,
M.
,
2020
, “
Second-Order Responses of a Conceptual Semi-submersible 10 MW Wind Turbine Using Full Quadratic Transfer Functions
,”
Renew. Energy
,
153
, pp.
653
668
.
57.
Lin
,
Y.-H.
, and
Yang
,
C.-H.
,
2020
, “
Hydrodynamic Simulation of the Semi-submersible Wind Float by Investigating Mooring Systems in Irregular Waves
,”
Appl. Sci.
,
10
(
12
), p.
4267
.
58.
Ma
,
K.-T.
,
Luo
,
Y.
,
Kwan
,
T.
, and
Wu
,
Y.
,
2019
,
Mooring System Engineering for Offshore Structures
,
Elsevier Inc
,
Cambridge
.
59.
DNV-GL
,
2021
, “
DNV-ST-0119—Floating Wind Turbine Structures
,” DNV.
60.
Leimeister
,
M.
,
Kolios
,
A.
,
Collu
,
M.
, and
Thomas
,
P
,
2019
, “
Larger MW-Class Floater Designs Without Upscaling? A Direct Optimization Approach
,”
International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9–14
,
p. V001T01A032
.
61.
Leimeister
,
M.
,
Kolios
,
A.
, and
Collu
,
M.
,
2021
, “
Development of a Framework for Wind Turbine Design and Optimization
,”
Modelling
,
2
(
1
), pp.
105
128
.
62.
DNV-GL
,
2016
, “
DNV-ST-0437—Loads and Site Conditions for Wind Turbines
,” DNV.
63.
IEC
,
2005
, “
IEC 61400-1: Wind Turbines—Part 1: Design Requirements
,” IEC.
64.
Rivera
,
M. M.
,
Ochoa-Zezzatti
,
A.
, and
Serna
,
S. P.
,
2022
, “Chapter 3—Embedded System for Model Characterization Developing Intelligent Controllers in Industry 4.0,”
Artificial Intelligence and Industry 4.0
,
A. E.
Hassanien
,
J. M.
Chatterjee
, and
V.
Jain
, eds.,
Intelligent Data-Centric Systems, Academic Press
,
Cambridge, MA
, pp.
57
91
.
You do not currently have access to this content.