Abstract

Offshore platforms are prone to fatigue damage. To evaluate the fatigue damage, these platforms are periodically inspected during the in-service lifetime. Inspection activities provide additional information, which includes detection and measurement of crack size. A Bayesian framework can be used to update the probability distribution of the uncertain parameters such as crack size. After updating the distribution of the crack size, it is possible to improve the estimation of joint reliability. The main purpose of this study is to present different methods of Bayesian inference to update the probability distribution of the crack size using the inspection results and to demonstrate how the results are different. Two different methods are presented: analytical (conjugate) and numerical methods. The advantages and shortcomings of each method are discussed. To compare the results of the analytical and numerical methods, two different situations are considered; updating the crack size distribution for a particular joint and updating the crack size distribution for several joints that have almost the same conditions. Although the proposed methodology can be applied to different kinds of structures, an example of tubular joints in a specific jacket platform is presented to demonstrate the proposed approach and to compare the results of two methods.

References

1.
Heredia-Zavoni
,
E.
, and
Montes-Iturrizaga
,
R.
,
2004
, “
A Bayesian Model for the Probability Distribution of Fatigue
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
3
), pp.
243
249
. 10.1115/1.1782645
2.
Karandikar
,
J. M.
,
Kim
,
N. H.
, and
Schmitz
,
T. L.
,
2012
, “
Prediction of Remaining Useful Life for Fatigue-Damaged Structures Using Bayesian Inference
,”
Eng. Fract. Mech. J.
,
96
(
1
), pp.
588
605
. 10.1016/j.engfracmech.2012.09.013
3.
Moan
,
T.
, and
Song
,
R.
,
2000
, “
Implications of Inspection Updating on System Fatigue Reliability of Offshore Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
122
(
3
), pp.
173
180
. 10.1115/1.1286601
4.
Peng
,
T.
,
He
,
J.
,
Xiang
,
Y.
,
Liu
,
Y.
,
Saxena
,
A.
,
Celaya
,
J.
, and
Goebel
,
K.
,
2015
, “
Probabilistic Fatigue Damage Prognosis of Lap Joint Using Bayesian Updating
,”
J. Intell. Mater. Syst. Struct.
,
26
(
8
), pp.
965
979
. 10.1177/1045389X14538328
5.
Almar-Naess
,
A.
,
1985
,
Fatigue Handbook for Offshore Steel
,
Tapir Publication
,
Trondheim, Norway
.
6.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1960
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic. Eng.
,
85
(
4
), pp.
528
533
. 10.1115/1.3656900
7.
Rajasankar
,
J.
,
Iyer
,
N. R.
, and
Appa Rao
,
T. V. S. R.
,
2003
, “
Structural Integrity Assessment of Offshore Tubular Joints Based on Reliability Analysis
,”
Int. J. Fatigue
,
25
(
7
), pp.
609
619
. 10.1016/S0142-1123(03)00021-5
8.
Ahmadi
,
H.
,
Lotfollahi-Yaghin
,
M.
, and
Aminfar
,
M. H.
,
2011
, “
Effect of Stress Concentration Factors on the Structural Integrity Assessment of Multi-Planar Offshore Tubular DKT-Joints Based on the Fracture Mechanics Fatigue Reliability Approach
,”
Ocean Eng.
,
38
(
17–18
), pp.
1883
1893
. 10.1016/j.oceaneng.2011.08.004
9.
Aghakouchak
,
A. A.
, and
Stiemer
,
S. F.
,
2001
, “
Fatigue Reliability Assessment of Tubular Joints of Existing Offshore Structures
,”
Can. J. Civil Eng.
,
28
(
4
), pp.
691
698
. 10.1139/l01-034
10.
Lin
,
H.
,
Chen
,
G.
,
Wang
,
Z.
, and
Yang
,
L.
,
2012
, “
Integrality Assessment of Tubular Joints in Aging Offshore Platform Based on Reliability Theory
,”
Adv. Mater. Res.
,
532–533
(
1
), pp.
238
242
. www.scientific.net/AMR.532-533.238
11.
Khalili
,
H.
,
Oterkus
,
S.
,
Barltrop
,
N.
,
Bharadwaj
,
U.
, and
Tipping
,
M.
,
2019
, “System Reliability Calculation of Jacket Platforms Including Fatigue and Extreme Wave Loading,”
Trends in the Analysis and Design of Marine Structures
,
Taylor
.
12.
Wang
,
W.
,
Shi
,
Y.
,
Wang
,
C.
, and
Li
,
S.
,
2006
, “
A new Method for System Fatigue Reliability Analysis of Offshore Steel Jacket
,”
Adv. Struct. Eng.
,
9
(
2
), pp.
185
193
. 10.1260/136943306776986985
13.
Mosayyebi
,
A. R.
, and
Aghakuchak
,
A. A.
,
2000
, “
Fatigue Reliability Analysis of Tubular Joints of Offshore Structures, Using Response Surface Method
,”
Asian J. Civil Eng.
,
1
(
1
), pp.
75
87
.
14.
Det Norske Veritas (DNV)
,
1995
,
“Guideline for Offshore Structural Reliability Analysis: Application to Jacket Platforms,” Technical Report, Report No. 95-3203
.
15.
Siddiqui
,
N. A.
, and
Ahmad
,
S.
,
2001
, “
Fatigue and Fracture Reliability of TLP Tethers Under Random Loading
,”
Mar. Struct.
,
14
(
3
), pp.
331
352
. 10.1016/S0951-8339(01)00005-3
16.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
17.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
2009
,
Bayesian Data Analysis
, 2nd ed.,
Chapman and Hall/CRC Press
,
Alexandria, VA
.
18.
Yuen
,
K.-V.
,
2010
,
Bayesian Methods for Structural Dynamics
,
John Wiley & Sons
,
New York
.
19.
Hamada
,
M. S.
,
Wilson
,
A. G.
,
Reese
,
C. S.
, and
Martz
,
H. F.
,
2008
,
Bayesian Reliability
,
Springer
,
New York
.
20.
Wilson
,
A.
, and
Fronczyk
,
K.
,
2016
,
Bayesian Reliability Combining Information
,
Institute for Defense Analyses
,
USA
.
21.
Li
,
M.
, and
Meeker
,
W. Q.
,
2014
, “
Application of Bayesian Methods in Reliability Data Analyses
,”
J. Qual. Technol.
,
46
(
1
), pp.
1
23
. 10.1080/00224065.2014.11917951
22.
Baroth
,
J.
,
Schoefs
,
F.
, and
Breysse
,
D.
,
2011
,
Construction Reliability, Safety, Variability and Sustainability
,
John Wiley & Sons
,
New York
.
23.
Kelly
,
D.
, and
Smith
,
C.
,
2011
,
Bayesian Inference for Probabilistic Risk Assessment
,
Springer
,
New York
.
You do not currently have access to this content.