Predictions of creep rupture of a reactor pressure vessel in a severe hypothetical accident needs to accurately take into account the interactions between creep and damage phenomena. This paper presents an approach based on a model coupling elasto-visco-plasticity and damage, formulated within the framework of continuous damage theory. The model and its implementation in a finite element software are presented and special attention is devoted to the procedure enabling the identification of the parameters of the model. The approach is validated on two tests of the program “RUPTHER” which concerns A508 cl3 steel cylinder and on the EC-FOREVER experiment (A533 steel mockup) developed as part of the European Commission Program “Assessment of Reactor Vessel Integrity.”

1.
Bhandari
,
S.
,
Feral
,
X.
,
Bergheau
,
J. M.
,
Mottet
,
G.
,
Dupas
,
P.
, and
Nicolas
,
L.
,
2000
, “
Creep-Damage Analysis: Comparison Between Coupled and Uncoupled Models
,”
ASME J. Pressure Vessel Technol.
,
122
, pp.
408
412
.
2.
Kachanov, L. M., 1958, “Time of the Rupture Process Under Creep Conditions,” Izv. Akad. Nauk. SSSR, Otd. Tekh. Nauk. Metall. Topl., 8, pp. 26–31.
3.
Rabotnov, Y. N., 1969, Creep Problems in Structural Members, North Holland.
4.
Lemaitre, J., and Chaboche, J. L., 1985, Me´canique des Mate´riaux Solides, Dunod.
5.
SYSTUS®, 2002, Version 2.0, User’s Manual, ESI Group, France.
6.
Bergheau, J. M., Mottet, G., and De´bordes, O., 1998, “Inte´gration nume´rique de lois de comportement e´lastoviscoplastique endommageable et applications,” Revue Europe´enne des Ele´ments Finis, 7(6), pp. 681–708.
7.
Zienkiewicz, O. C., and Taylor, R. L., 2000, The Finite Element Method, 2: Solid Mechanics, 5th ed., Butterworth and Heneimann.
8.
Pont, D., Bergheau, J. M., Rochette, M., and Fortunier, R., 1994, “Identification of a Kinetic Model for Anisothermal Metallurgical Transformations in Steels,” Inverse Problems in Engineering Mechanics, H. D. Bui, M. Tanaka et al., eds., Balkema, Rotterdam, pp. 151–156.
9.
Nicolas
,
L.
,
Mongabure
,
P.
,
Le Ber
,
L.
,
Bhandari
,
S.
, and
Messelier-Gouze
,
C.
,
2001
, “
Comparison of the Predictions Relying on Coupled/Uncoupled Damage-Viscoplasticity Models for Creep Test Analyses
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
298
304
.
10.
Sainte Catherine, C., 1998, “Tensile and Creep Tests Material Characterization of Pressure Vessel Steel (16MND5) at High Temperatures (20 up to 1300°C),” Rapport SEMT/LISN/RT/98-009/A, CEA Saclay.
11.
Rempe, J. L., Chavez, S. A., Thinnes, G. L., Allison, C. M., Korth, G. E., Witt, R. J., Sienicki, J. J., Wang, S. K., Stickler, L. A., Heath, C. H., and Snow, S. D., 1993, “Light Water Reactor—Lower Head Failure Analysis,” NUREG/CR-5642, EEG 2618.
12.
Devos, J., Mongabure, P., Sainte Catherine, C., and Nicolas, L., 1998, “The RUPTHER Program: Progress Status,” PVP-Vol. 362, ASME, New York.
13.
Theerthan, S. A., Karbojian, A., and Sehgal, B. R., 2001, “EC-FOREVER Experiments on Thermal and Mechanical Behavior of a Reactor Pressure Vessel During a Severe Accident—Technical Report-1 : EC-FOREVER 2 Test,” Contract No. FIKS-CT1999-0001, SAM-ARVI-D008.
14.
Sehgal, B. R., Asis Giri, Theerthan, S. A., and Karbojian, A., 2001, “Quick-Look Report—The EC-FOREVER 3 (B) Experiment at KTH/NPS,” Contract No. FIKS-CT1999-0001, SAM-ARVI-D014.
You do not currently have access to this content.