This paper discusses the stability of underground pipelines with preformed vertical bends buried in sandy soil. More specifically, the minimum cover height required to prevent the pipe from bowing under the action of forces due to temperature change and internal pressure is estimated. The variables considered include the pipe and soil materials, diameter, thickness, overburden height, bend radius, bend angle, internal pressure, fluid specific weight, and temperature variation. A comprehensive three-dimensional finite element analysis is carried out. The results are extracted from the output obtained. These results are put in a database which is used to develop general regression models to determine the relationships among the different variables. Different buckling modes are also considered. All of these results and models are entered into a computer software program for ready access.

1.
ASME B31.4, 1992, Liquid Transportation Systems for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia, and Alcohols, ASME, New York.
2.
Karman, Th. von, 1911, “U¨ber die Forma¨nderung du¨nnwandiger Rohre, insbesondere federnder Ausgleichrohre,” Zeitschrift des Vereines deutscher Ingenieure, 55(45), pp. 1889–1895.
3.
Vigness
,
I.
,
1943
, “
Elastic Properties of Curved Tubes
,” Trans. ASME, pp. 105–120.
4.
Pardue
,
T. E.
, and
Vigness
,
I.
,
1951
, “
Properties of Thin Walled Curved Tubes of Short Bend Radius
,”
Trans. ASME
,
73
, pp.
77
84
.
5.
Kafka
,
P. G.
, and
Dunn
,
M. B.
,
1956
, “
Stiffness of Curved Circular Tubes With Internal Pressure
,”
Trans. ASME
,
78
, pp.
247
254
.
6.
Rodabaugh
,
E. C.
, and
George
,
H. H.
,
1957
, “
Effect of Internal Pressure on Flexibility and Stress Intensification Factors of Curved Pipe or Welding Elbow
,”
Trans. ASME
,
79
, pp.
939
948
.
7.
Findlay
,
G. E.
, and
Spence
,
J.
,
1979
, “
Stress Analysis of Smooth Curved Tubes With Flanged End Constraints
,”
Int. J. Pressure Vessels Piping
,
7
, pp.
83
103
.
8.
Thomson
,
G.
, and
Spence
,
J.
,
1983
, “
Maximum Stresses and Flexibility Factors of Smooth Pipe Bends With Tangent Pipe Terminations Under In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
105
, pp.
329
336
.
9.
Whatham
,
J. F.
,
1986
, “
Pipe Bend Analysis by Thin Shell Theory
,”
ASME J. Appl. Mech.
,
53
, pp.
173
180
.
10.
Gresnight
,
A. M.
, and
van Foeken
,
R. J.
,
1995
, “
Strength and Deformation Capacity of Bends in Pipelines
,”
Int. J. Offshore Polar Eng.
,
5
(
4
), pp.
294
307
.
11.
Natarajan
,
R.
, and
Blomfield
,
J. A.
,
1975
, “
Stress Analysis of Curved Pipes With End Constraints
,”
Comput. Struct.
,
5
, pp.
187
196
.
12.
Ohtsubo
,
M.
, and
Watanabe
,
O.
,
1977
, “
Flexibility and Stress Factors of Pipe Bends—An Analysis by the Finite Ring Method
,”
ASME J. Pressure Vessel Technol.
,
99
, pp.
281
290
.
13.
Weiß
,
E.
,
Lietzmann
,
A.
, and
Rudolph
,
J.
,
1996
, “
Linear and Nonlinear Finite-Element Analyses of Pipe Bends
,”
Int. J. Pressure Vessels Piping
,
67
(
2
), pp.
211
217
.
14.
Hibbett, H. D., 1974, “Special Structural Elements for Piping Analysis,” in ASME Special Publication, Pressure Vessels and Piping: Analysis and Computers, S. Tuba, R. A. Selby, and W. B. Wright, eds., ASME, New York, pp. 1–10.
15.
Bathe
,
K. J.
, and
Almeida
,
C. A.
,
1982
, “
A Simple and Effective Pipe Elbow Element-Linear Analysis
,”
ASME J. Appl. Mech.
,
47
, pp.
93
100
.
16.
Mackenzie
,
D.
, and
Boyle
,
J. T.
,
1992
, “
A Simple Pipe Bend Element for Piping Flexibility Analysis
,”
Int. J. Pressure Vessels Piping
,
51
(
1
), pp.
85
106
.
17.
De Melo
,
F. J. M. Q.
, and
De Castro
,
P. M. S. T.
,
1992
, “
A Reduced Integration Mindlin Beam Element for Linear Elastic Stress Analysis of Curved Pipes Under Generalized In-Plane Loading
,”
Comput. Struct.
,
43
(
4
), pp.
787
794
.
18.
Winkler, E., 1867, Die leher von der elasticitaet and festigkeit, Prag, Dominicaus (Czechoslovakia), p. 182.
19.
Hetenyi, M., 1946, Beams on Elastic Foundation, University of Michigan Press, Ann Arbor.
20.
Vesic´
,
A. S.
,
1971
, “
Breakout Resistance of Objects Embedded in Ocean Bottom
,”
J. Soil Mech. Found. Div.
,
94
(
SM9
), pp.
1183
1205
.
21.
Audibert
,
J. M. E.
, and
Nyman
,
K. J.
,
1977
, “
Soil Restraint Against Horizontal Motion of Pipe
,”
J. Geotech. Eng.
,
103
(
GT10
), Oct., pp.
1119
1142
.
22.
Nyman
,
K. J.
,
1984
, “
Soil Response Against Oblique Motion of Pipes
,”
J. Transp. Eng.
,
110
(
2
), pp.
190
202
.
23.
Hsu
,
T. W.
,
1996
, “
Soil Restraint Against Oblique Motion of Pipelines in Sand
,”
Can. Geotech. J.
,
33
(
1
), pp.
180
188
.
24.
Trautmann
,
C. H.
,
O’Rourke
,
T. D.
, and
Kulhawy
,
F. H.
,
1985
, “
Uplift Force-Displacement Response of Buried Pipe
,”
J. Geotech. Eng.
,
111
(
9
), Sept., pp.
1061
1075
.
25.
Trautmann
,
C. H.
, and
O’Rourke
,
T. D.
,
1985
, “
Lateral Force-Displacement Response of Buried Pipe
,”
J. Geotech. Eng.
,
111
(
9
), Sept., pp.
1077
1092
.
26.
Row
,
R. K.
, and
Davis
,
E. H.
,
1982
, “
The Behavior of Anchor Plates in Sand
,”
Geotechnique
,
32
(
1
), March, pp.
25
41
.
27.
Ovesen, N. K., 1964, “Anchor Slab, Calculation Methods and Model Tests,” Bulletin 16, Danish Geotechnical Institute, Copenhagen, Denmark.
28.
Dickin
,
E. A.
,
1994
, “
Uplift Resistance of Buried Pipelines in Sand
,”
Soils Found.
,
34
(
2
), June, pp.
41
48
.
29.
Poorooshasb, F., Paulin, M. J., Rizkalla, M., and Clark, J. I., 1994, “Centrifuge Modeling of Laterally Loaded Pipelines,” Transport Research Record 1431, TRB, National Research Council, Washington, D.C., pp. 33–40.
30.
Hsu
,
T. W.
,
1993
, “
Rate Effect on Lateral Soil Restraint of Pipelines
,”
Soils Found.
,
33
(
4
), pp.
159
169
.
31.
Yin, J. H., Paulin, M. J., Clark, J. I., and Poorooshasb, F., 1993, “Preliminary Finite Element Analysis of Lateral Pipeline/Soil Interaction and Comparison to Centrifuge Model Test Results,” Proc. 12th International Conference on Offshore Mechanics and Arctic Engineering, Part 5 (of 6), ASME, New York, pp. 143–155.
32.
Altaee, A., and Boivin, R., 1995, “Laterally Displaced Pipelines: Finite Element Analysis,” Proc. 14th International Conference on Offshore Mechanics and Arctic Engineering, Part 5 (of 6), ASME, New York, pp. 209–216.
33.
Altaee, A., Fellenius, B. H., and Salem, H., 1996, “Finite Element Modeling of Lateral Pipeline-Soil Interaction,” Proc. 15th Int. Conference on Offshore Mechanics and Arctic Engineering, ASME, New York, Part 5 (of 6), pp. 333–341.
34.
Peng, L. C., 1978, “Stress Analysis Method for Underground Pipe Lines, Part 1 and 2,” Pipeline Industry, April and May, Houston, TX.
35.
Goodling, E. C., Jr., 1997, “Quantification of Nonlinear Restraint on the Analysis of Restrained Underground Piping,” Proc., 1997 ASME Pressure Vessels and Piping Conference, Pressure Vessels and Piping Division, ASME, New York, PVP, 356, pp. 107–116.
36.
Ng, P. C. F., Pyrah, I. C., and Anderson, W. F., 1997, “Prediction of Soil Restraint to a Buried Pipeline Using Interface Elements,” Numerical Models in Geomechanics Proceedings of the Sixth International Symposium, NUMOG VI, pp. 469–487.
37.
SAES-L-051, 1998, “Construction Requirements for Cross-Country Pipelines,” Saudi ARAMCO Engineering Standard, Saudi Arabian Oil Company (Saudi ARAMCO), Saudi Arabia.
38.
SMAP-3D, 1999, SMAP-3D, Structure Medium Analysis Program, User’s Manual, Version 4.0, Comtech Research, Clifton, VA.
39.
Marston, A., and Anderson, A. O., 1913, “The Theory of Loads on Pipes in Ditches and Tests on Cement and Clay Drain Tile and Sewer Pipe,” Bulletin 31, Engineering Experiment Station, Iowa State College, Ames, IA.
40.
Abduljauwad, S. N., Al-Ghamedy, H. N., Al-Shayea, N. A., and Asi, I. M., 2000, “Behavior, Analysis and Design of Buried Pipelines,” Third Progress Report, PN 20014, prepared for Saudi Aramco, Dhahran, April.
41.
Abduljauwad, S. N., Al-Ghamedy, H. N., Al-Shayea, N. A., and Asi, I. M., 2000, “Behavior, Analysis and Design of Buried Pipelines,” Fourth Progress Report, PN 20014, prepared for Saudi Aramco, Dhahran, October.
42.
ASME B31.1, 1992, “Appendix VII—Nonmandatory Procedures for the Design of Restrained Underground Piping,” Power Piping, ASME, New York.
43.
CGL (Committee on Gas and Liquid Fuel Lines), 1984, Guidelines for the Seismic Design of Oil and Gas Pipelines Systems, American Society of Civil Engineers, New York, New York.
44.
CANDE, 1989, CANDE-89 Culvert Analysis and Design Computer Program User’s Manual, Report No. FHWA-RD-89-169, Author: S. C. Musser, Federal Highway Administration, VA.
45.
FEMAP, 1996, FEMAP User’s Manual, Version 4.5 for Windows, Enterprise Software Products, Inc.
46.
FEMAP, 1996, Introduction to FEA Using FEMAP, Enterprise Software Products, Inc.
47.
Siddiqui, J. A., 2000, “The Interaction Between Soil and Buried Bent Pipelines,” M.S. thesis, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
48.
Timoshenko, S. P., and Gere, J. M., 1963, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, U.S.A.
49.
Antaki, G., 1998, “A Review of Methods for the Analysis of Buried Pressure Piping,” Welding Research Council, U.S.A.
50.
Ellinas, C. P., 1984, Buckling of Offshore Structures, A State-of-the-Art Review of Buckling of Offshore Structures, Granada Publishing Ltd., London, U.K.
51.
Watashi
,
K.
, and
Iwata
,
K.
,
1995
, “
Thermal Buckling and Progressive Ovalization of Pipes: Experiences at the TTS Sodium Test Facility and Their Analysis
,”
Nucl. Eng. Des.
,
153
, pp.
319
330
.
52.
Farshad, M., 1994, Stability of Structure, Elsevier.
53.
AWWA C150, 1996, “American National Standard for Thickness Design of Ductile-Iron Pipe,” American Water Works Association, Denver, Colorado, U.S.A.
54.
Moore
,
I. D.
, and
Booker
,
J. R.
,
1985
, “
Simplified Theory for the Behavior of Buried Flexible Cylinders Under the Influence of Uniform Hoop Compression
,”
Int. J. Solids Struct.
,
21
(
9
), pp.
929
941
.
55.
Moore
,
I. D.
, and
Booker
,
J. R.
,
1985
, “
Behavior of Buried Flexible Cylinders Under the Influence of Nonuniform Hoop Compression
,”
Int. J. Solids Struct.
,
21
(
9
), pp.
943
956
.
56.
Murray
,
D. W.
,
1997
, “
Local Buckling, Strain Localization, Wrinkling and Postbuckling Response of Line Pipe
,”
Eng. Struct.
,
19
(
5
), pp.
360
371
.
57.
Chiou
,
Y.-J.
, and
Chi
,
S.-Y.
,
1996
, “
A Study on Buckling of Offshore Pipelines
,”
ASME J. Offshore Mech. Arct. Eng.
,
118
, February, pp.
62
70
.
58.
Hobbs
,
R. E.
,
1981
, “
Pipeline Buckling Caused by Axial Loads
,”
J. Constr. Steel Res.
,
1
(
2
), January, pp.
2
10
.
59.
Hobbs
,
R. E.
,
1984
, “
In-Service Buckling of Heated Pipelines
,”
J. Transp. Eng.
,
110
(
2
), March, pp.
175
189
.
60.
Taylor
,
N.
, and
Gan
,
A. B.
,
1984
, “
Regarding the Buckling of Pipelines Subject to Axial Loading
,”
J. Constr. Steel Res.
,
4
, pp.
45
50
.
61.
Taylor
,
N.
, and
Gan
,
A. B.
,
1986
, “
Refined Modelling for the Lateral Buckling of Submarine Pipelines
,”
J. Constr. Steel Res.
,
6
, pp.
143
162
.
62.
Taylor
,
N.
, and
Gan
,
A. B.
,
1987
, “
Refined Modelling for the Vertical Buckling of Submarine Pipelines
,”
J. Constr. Steel Res.
,
7
, pp.
55
74
.
63.
Reddy
,
B.
,
1979
, “
An Experimental Study of the Plastic Buckling of Circular Cylinders in Pure Bending
,”
Int. J. Solids Struct.
,
15
, pp.
669
683
.
64.
Stephens, D. R., 1991, “Pipeline Monitoring—Limit State Criteria,” Battle Report NG-18 No. 188 for the American Gas Association, U.S.A.
65.
Yun
,
H.
, and
Kyriakides
,
S.
,
1985
, “
Model for Beam-Mode Buckling of Buried Pipelines
,”
J. Eng. Mech.
,
111
(
2
), February, pp.
235
253
.
66.
Yun
,
H.
, and
Kyriakides
,
S.
,
1990
, “
On the Beam and Shell Modes of Buckling of Buried Pipelines
,”
Int. J. Soil Dyn. Earthquake Eng.
,
9
(
4
), pp.
179
193
.
67.
Deutsch, W. L., Jr., and R. F. Weston, Inc., 1996, “Determination of the Required Thickness of Soil Cover Above Buried Landfill Gas Transfer Pipes to Prevent Thermal Buckling: An Engineered Approach,” Proc. 12th (1996) International Conference on Solid Waste Technology and Management, Philadelphia, PA.
68.
Shaw, P. K., and Bomba, J. G., 1994, “Finite-Element Analysis of Pipeline Upheaval Buckling,” Pipeline Technology, ASME, V, pp. 291–296.
69.
Chiou, Y.-J., and Chi, S.-Y., 1993, “Beam Mode Buckling of Buried Pipelines in a Layered Medium,” Proc. Third (1993) International Offshore and Polar Engineering Conference, Singapore, 6–11 June, pp. 10–17.
70.
Zhou
,
Z.
, and
Murray
,
D. W.
,
1995
, “
Analysis of Postbuckling Behavior of Line Pipe Subjected to Combined Loads
,”
Int. J. Solids Struct.
,
32
(
20
), pp.
3015
3036
.
71.
Croll
,
J. G. A.
,
1997
, “
A Simplified Model of Upheaval Thermal Buckling of Subsea Pipelines
,”
Thin-Walled Struct.
,
29
(
1–4
), pp.
59
78
.
72.
Allan
,
T.
,
1968
, “
One-way Buckling of a Compressed Strip Under Lateral Loading
,”
J. Mech. Eng. Sci.
,
10
(
2
), pp.
175
181
.
73.
Raoof, M., and Maschner, E., 1994, “Vertical Buckling of Heated Offshore Pipelines,” Proc. Fourth (1994) International Offshore and Polar Engineering Conference, Osaka, Japan, April 10–15, pp. 118–127.
74.
API Recommended Practice 1102, 1993, “Steel Pipelines Crossing Railroads and Highways,” American Petroleum Institute, Washington, D.C.
75.
Jullien, J. F., 1991, Buckling of Shell Structures on Land, in the Sea and in the Air, Elsevier.
76.
Abduljauwad, S. N., Al-Ghamedy, H. N., Al-Shayea, N. A., Asi, I. M., Siddiqui, J. A., and Bashir, R., 2001, “Behavior, Analysis and Design of Buried Pipelines,” Final Report, PN 20014, prepared for Saudi Aramco, Dhahran, November.
77.
Abduljauwad, S. N., Al-Ghamedy, H. N., Al-Shayea, N. A., Asi, I. M., Siddiqui, J. A., and Bashir, R., 2001, Analysis and Design of Buried Pipelines, User’s Manual, ADBP Program, prepared for Saudi Aramco, Dhahran, November.
You do not currently have access to this content.