An experimental investigation was conducted on the crack growth behavior of a pressure vessel steel, 16MnR, in ambient air. Standard compact tension specimens were subjected to Mode I loading with several R-ratios and loading amplitudes. Three circular notch sizes ranging from very sharp notch to blunt notch were used. In addition to constant amplitude loading, experiments were conducted to study the influences of overload and loading sequence on crack growth. The results show that the R-ratio has an insignificant influence on the crack growth of the material. The size of the notch together with the R-ratio and loading amplitude has a great influence on the early crack growth from the notch. A single tensile overload during a constant amplitude loading experiment retards the crack growth significantly. Right after the application of an overload, the crack growth rate is higher than that of the stable crack growth observed in the constant amplitude loading. The crack growth rate decreases and reaches a minimum value before it gradually increases and reaches the stable crack growth curve. In high-low sequence loading with the maximum load in the second step lower than that of the first loading step, the preceding higher constant amplitude loading results in a significant crack growth retardation in the second loading step. This phenomenon is similar to the effect of a single tensile overload on the constant amplitude loading. An existing model making use of the stress intensity factor is discussed with respect to its capability to describe the observed crack growth behavior with the influence of overload and sequence loading.

1.
Gao
,
Z. L.
, and
Zhang
,
K. D.
, 1997, “
Comparison of the Fracture and Fatigue Properties of 16MnR Steel Weld Metal, the HAZ and the Base Metal
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
559
562
.
2.
Gao
,
Z. L.
,
Zhao
,
T. W.
,
Wang
,
X. G.
, and
Jiang
,
Y.
, “
Multiaxial Fatigue of 16MnR Steel
,”
ASME J. Pressure Vessel Technol.
0094-9930, to be published.
3.
Chen
,
J. H.
,
Wang
,
G. Z.
,
Wang
,
Q.
, and
Liu
,
Y. G.
, 2004, “
Effects of Sizes of Ferrite Grains and Carbide Particles on Toughness of Notched and Precracked Specimens of Low-Alloy Steels
,”
Int. J. Fract.
0376-9429,
126
, pp.
223
241
.
4.
Wang
,
G. Z.
,
Liu
,
Y. G.
, and
Chen
,
J. H.
, 2004, “
Investigation of Cleavage Fracture Initiation in Notched Specimens of a C-Mn Steel With Carbides and Inclusions
,”
Mater. Sci. Eng., A
0921-5093,
369
, pp.
181
191
.
5.
Hong
,
Y. J.
,
Xing
,
J.
, and
Wang
,
J. B.
, 1999, “
Statistical Analysis of Fatigue Crack Growth for 16MnR Steel Under Constant Amplitude Loads
,”
Int. J. Pressure Vessels Piping
0308-0161,
76
, pp.
379
385
.
6.
Smith
,
R. A.
, and
Miller
,
K. J.
, 1977, “
Fatigue Cracks at Notches
,”
Int. J. Mech. Sci.
0020-7403,
19
, pp.
11
22
.
7.
Li
,
W. F.
, 2003, “
Short Fatigue Crack Propagation and Effect of Notch Plastic Field
,”
Nucl. Eng. Des.
0029-5493,
84
, pp.
193
200
.
8.
McClung
,
R. C.
, 1991, “
A Simple Model for Fatigue Crack Growth Near Stress Concentrations
,”
ASME J. Pressure Vessel Technol.
0094-9930,
113
, pp.
542
548
.
9.
Hammouda
,
M. M. I.
,
Sallam
,
H. E. M.
, and
Osman
,
H. G.
, 2004, “
Significance of Crack Tip Plasticity to Early Notch Fatigue Crack Growth
,”
Int. J. Fatigue
0142-1123,
26
, pp.
173
182
.
10.
Ding
,
F.
,
Feng
,
M. L.
, and
Jiang
,
Y.
, 2007, “
Modeling of Fatigue Crack Growth From a Notch
,”
Int. J. Plast.
0749-6419,
23
, pp.
1167
1188
.
11.
Suresh
,
S.
, 1998,
Fatigue of Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
12.
Tsukuda
,
H.
,
Ogiyama
,
H.
, and
Shiraishi
,
T.
, 1996, “
Transient Fatigue Crack Growth Behaviour Following Single Overloads at High Stress Ratios
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
, pp.
879
891
.
13.
Hammouda
,
M. M. I.
,
Ahmad
,
S. S. E.
,
Seleem
,
M. H.
, and
Sallam
,
H. E. M.
, 1998, “
Fatigue Crack Growth Due to Two Successive Single Overloads
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
1537
1547
.
14.
Sadananda
,
K.
,
Vasudevan
,
A. K.
,
Holtz
,
R. L.
, and
Lee
,
E. U.
, 1999, “
Analysis of Overload Effects and Related Phenomena
,”
Int. J. Fatigue
0142-1123,
21
, pp.
S233
-
S246
.
15.
Borrego
,
L. P.
,
Ferreira
,
J. M.
, and
Costa
,
J. M.
, 2001, “
Fatigue Crack Growth and Crack Closure in an AlMgSi Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
24
, pp.
255
265
.
16.
Shin
,
C. S.
, and
Hsu
,
S. H.
, 1993, “
On the Mechanisms and Behaviour of Overload Retardation in AISI 304 Stainless Steel
,”
Int. J. Fatigue
0142-1123,
15
, pp.
181
192
.
17.
Wheatley
,
G.
,
Hu
,
X. Z.
, and
Estrin
,
Y.
, 1999, “
Effects of a Single Tensile Overload on Fatigue Crack Growth in a 316L Steel
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
22
, pp.
1041
1051
.
18.
Robin
,
C.
,
Louah
,
M.
, and
Pluvinage
,
G.
, 1983, “
Influence of an Overload on the Fatigue Crack Growth in Steels
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
6
, pp.
1
13
.
19.
Damri
,
D.
, and
Knott
,
J. F.
, 1991, “
Transient Retardations in Fatigue Crack Growth Following a Single Peak Overload
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
, pp.
709
719
.
20.
Damri
,
D.
, and
Knott
,
J. F.
, 1993, “
Fracture Modes Encountered Following the Application of a Major Tensile Overload Cycle
,”
Int. J. Fatigue
0142-1123,
15
, pp.
53
60
.
21.
Shuter
,
D. M.
, and
Geary
,
W.
, 1996, “
Some Aspects of Fatigue Crack Growth Retardation Behaviour Following Tensile Overloads in a Structural Steel
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
, pp.
189
199
.
22.
Makabe
,
C.
,
Purnowidodo
,
A.
, and
McEvily
,
A. J.
, 2004, “
Effects of Surface Deformation and Crack Closure on Fatigue Crack Propagation after Overloading and Underloading
,”
Int. J. Fatigue
0142-1123,
26
, pp.
1341
1348
.
23.
Hammouda
,
M. M. I.
,
Osman
,
H. G.
, and
Sallam
,
H. E. M.
, 2004, “
Mode I Notch Fatigue Crack Growth Behaviour Under Constant Amplitude Loading and Due to the Application of a Single Tensile Overload
,”
Int. J. Fatigue
0142-1123,
26
, pp.
183
192
.
24.
Ward-Close
,
C. M.
,
Blom
,
A. F.
, and
Ritchie
,
R. O.
, 1989, “
Mechanisms Associated With Transient Fatigue Crack Growth Under Variable-Amplitude Loading: An Experimental and Numerical Study
,”
Eng. Fract. Mech.
0013-7944,
32
, pp.
613
638
.
25.
Yuen
,
B. K. C.
, and
Taheri
,
F.
, 2006, “
Proposed Modifications to the Wheeler Retardation Model for Multiple Overloading Fatigue Life Prediction
,”
Int. J. Fatigue
0142-1123,
28
, pp.
1803
1819
.
26.
ASTM
, 1999, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
Annual Book of ASTM Standards
,
American Society for Testing and Materials
,
Philadelphia
, pp.
591
630
, Standard No. E647-99.
27.
Wheeler
,
O. E.
, 1972, “
Spectrum Loading and Crack Growth
,”
ASME J. Basic Eng.
0021-9223,
94
, pp.
181
186
.
28.
Kalnaus
,
S.
,
Fan
,
F.
,
Vasudevan
,
A. K.
, and
Jiang
,
Y.
, 2008, “
An Experimental Investigation on Fatigue Crack Growth of AL6XN Stainless Steel
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
2002
2019
.
29.
Irwin
,
G. R.
, 1957, “
Analysis of Stresses and Strains Near the End of a Crack Tip Traversing a Plate
,”
ASME J. Appl. Mech.
0021-8936,
E24
, pp.
361
364
.
30.
Jiang
,
Y.
, and
Feng
,
M.
, 2004, “
Modeling of Fatigue Crack Propagation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
77
86
.
31.
Hou
,
C. Y.
, and
Charng
,
J. J.
, 1996, “
Estimation of Plasticity Induced Crack Closure in a Pre-existing Plastic Zone
,”
Int. J. Fatigue
0142-1123,
18
, pp.
463
474
.
You do not currently have access to this content.