In 1965, the Atomic Energy Commission, at the advice of the Advisory Committee on Reactor Safeguards, initiated the process that resulted in the establishment of the Heavy Section Steel Technology (HSST) program at Oak Ridge National Laboratory. In 1989, the Heavy-Section Steel Irradiation (HSSI) program, formerly the HSST task on irradiation effects, was formed as a separate program, and in 2007, the HSST/HSSI programs, sponsored by the U.S. Nuclear Regulatory Commission (USNRC), celebrated 40 years of continuous research oriented toward the safety of light-water nuclear reactor pressure vessels (RPVs). This paper presents a summary of results from those programs with a view to future activities. The HSST program was established in 1967 and initially included extensive investigations of heavy-section low-alloy steel plates, forgings, and welds, including metallurgical studies, mechanical properties, fracture toughness (quasi-static and dynamic), fatigue crack-growth, and crack-arrest toughness. Also included were irradiation effects studies, thermal shock analyses, testing of thick-section tensile and fracture specimens, and nondestructive testing. In the subsequent decades, the HSST Program conducted extensive large-scale experiments with intermediate-size vessels (with varying size flaws) pressurized to failure, similar experiments under conditions of thermal shock and even pressurized thermal shock (PTS), wide-plate crack-arrest tests, and biaxial tests with cruciform-shaped specimens. Extensive analytical and numerical studies accompanied these experiments, including the development of computer codes such as the recent Fracture Analysis of Vessels Oak Ridge code currently being used for PTS evaluations. In the absence of radiation damage to the RPVs, fracture of the vessel is improbable. However, it was recognized that exposure to high energy neutrons can result in embrittlement of radiation-sensitive RPV materials. The HSSI Program conducted a series of experiments to assess the effects of neutron irradiation on RPV material behavior, especially fracture toughness. These studies included RPV plates and welds, varying chemical compositions, and fracture toughness specimens up to 101.6 mm (4 in.) thickness. The results of these investigations, in conjunction with results from commercial reactor surveillance programs, are used to develop a methodology for the prediction of radiation effects on RPV materials. Results from the HSST and HSSI programs are used by the USNRC in the evaluation of RPV integrity and regulation of overall nuclear plant safety.

1.
Whitman
,
G. D.
, 1986, “
Historical Summary of the Heavy-Section Steel Technology Program and Some Related Activities in Light-Water Reactor Pressure Vessel Safety Research
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-4489 (ORNL-6259).
2.
1967,
Technology of Steel Pressure Vessels for Water-Cooled Nuclear Reactors
,”
G. D.
Whitman
,
G. C.
Robinson
, and
A. W.
Savolainen
, eds.,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, ORNL-NSIC-21.
3.
Canonico
,
D. A.
, 1979, “
The Heavy-Section Steel Technology (HSST) Program
,”
Metal Progress
,
ASM
,
Metals Park, OH
.
4.
Nanstad
,
R. K.
,
Corwin
,
W. R.
,
Alexander
,
D. J.
,
Haggag
,
F. M.
,
Iskander
,
S. K.
,
McCabe
,
D. E.
,
Sokolov
,
M. A.
, and
Stoller
,
R. E.
, 1995, “
Heavy-Section Irradiation Program on Irradiation Effects in Light-Water Reactor Pressure Vessel Materials
,”
Fatigue and Crack Growth: Environmental Effects, Modeling Studies, and Design Considerations
,
S.
Yukawa
,
D. P.
Jones
, and
H. S.
Mehta
, eds.,
ASME
,
New York
, PVP-Vol.
306
.
5.
Pugh
,
C. E.
, and
Bass
,
B. R.
, 2003, “
Results From Large-Scale Fracture Experiments and Validation of Linear Elastic Fracture Mechanics for Use in PTS Analyses
,” Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/NRC/LTR-03/11.
6.
Pennell
,
W. E.
, 1992, “
Heavy-Section Steel Technology Program: Fracture Issues
,”
ASME J. Pressure Vessel Technol.
0094-9930,
114
, pp.
255
264
.
7.
Pugh
,
C. E.
,
Bass
,
B. R.
, and
Dickson
,
T. L.
, 2007, “
Role of Probabilistic Analysis in Integrity Assessments of Reactor Pressure Vessels Exposed to Pressurized Thermal-Shock Conditions
,”
Eng. Fail. Anal.
,
14
, pp.
501
517
.
8.
Loss
,
F. J.
, 1970, “
Dynamic Tear Investigations of the Fracture Toughness of Thick-Section Steel
,” NRL Report No. 7056 (HSST-TR-7), Naval Research Lab., Washington, DC.
9.
Canonico
,
D. A.
, and
Berggren
,
R. G.
, 1971, “
Tensile and Impact Properties of Thick-Section Plate and Weldments
,”
Nucl. Eng. Des.
0029-5493,
17
(
1
), pp.
4
15
.
10.
Shabbits
,
W. O.
,
Pryle
,
W. H.
, and
Wessel
,
E. T.
, 1969, “
Heavy Section Fracture Toughness Properties of A533 Grade B Class 1 Steel Plate and Submerged Arc Weldment
,” Westinghouse Electric Corporation Nuclear Energy Systems, PWR Systems Division, Pittsburgh, PA, WCAP-7414 (HSSTP-TR-6), p.
15235
.
11.
Crosley
,
P. B.
, and
Ripling
,
E. J.
, 1970, “
Crack Arrest Fracture Toughness of A533 Grade B Class 1 Pressure Vessel Steel
,” HSSTP-TR-8, Materials Research Laboratory, Inc., Glenwood, IL.
12.
1972, “
PVRC Recommendations on Toughness Requirements for Ferritic Materials, WRC Bulletin 175
,” PVRC Ad Hoc Group on Toughness Requirements, New York, NY.
13.
Randall
,
P. N.
, and
Merkle
,
J. G.
, 1971, “
Gross Strain Crack Tolerance of Steels
,”
Nucl. Eng. Des.
0029-5493,
17
, pp.
46
63
.
14.
Bamford
,
W. H.
, 1988, “
A Summary of Environmentally Assisted Crack-Growth Studies Performed at Westinghouse Electric Corporation Under Funding From the Heavy-Section Steel Technology Program
,” Westinghouse Electric Corporation, Division, Pittsburgh, PA, NUREG/CR-5020.
15.
Witt
,
F. J.
, and
Mager
,
T. R.
, 1972, “
A Procedure for Determining Bounding Values on Fracture Toughness KIc at Any Temperature
,” Union Carbide Corp., Nuclear Division, Oak Ridge National Laboratory, Oak Ridge, TN, ORNL-TM-3894.
16.
Rice
,
J. R.
, 1968, “
A Path-Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
379
386
.
17.
Rice
,
J. R.
,
Paris
,
P. C.
, and
Merkle
,
J. G.
, 1973, “
Some Further Results of J-Integral Analysis and Estimates
,”
Progress in Flaw Growth and Fracture Toughness Testing
,
ASTM
,
Philadelphia, PA
, ASTM STP 536, pp.
231
245
.
18.
Merkle
,
J. G.
, and
Corten
,
H. T.
, 1974, “
A J Integral Analysis for the Compact Specimen, Considering Axial Force as Well as Bending Effects
,”
ASME J. Pressure Vessel Technol.
0094-9930,
96
(J), pp.
286
292
.
19.
Merkle
,
J. G.
, 1973, “
Analytical Applications of the J-Integral
,”
Progress in Flaw Growth and Fracture Toughness Testing
,
ASTM
,
Philadelphia, PA
, ASTM STP 536, pp.
264
280
.
20.
Grigory
,
S. C.
, 1971, “
Testing the Six-Inch Thick Flawed Tensile Specimen for the Heavy Section Steel Technology Program
,”
Nucl. Eng. Des.
0029-5493,
17
, pp.
161
169
.
21.
Abbatiello
,
A. A.
,
Derby
,
R. W.
, and
King
,
T. A.
, 1971, “
Producing Epoxy-Model Pressure Vessels for Fracture Tests
,”
Exp. Mech.
0014-4851,
11
, pp.
46
48
.
22.
Derby
,
R. W.
, 1974, “
Fracture Studies of Model Pressure Vessels Made of Nuclear Grade Steel
,”
Proceedings of the First Intern. Conference on Structural Mechanics in Reactor Technology
, Berlin, Germany, G616.
23.
Merkle
,
J. G.
,
Whitman
,
G. D.
, and
Bryan
,
R. H.
, 1975, “
An Evaluation of the HSST Program Intermediate Pressure Vessel Tests in Terms of Light-Water-Reactor Pressure Vessel Safety
,” Union Carbide Corp., Nuclear Division, Oak Ridge National. Laboratory, Oak Ridge, TN, ORNL/TM-5090.
24.
Cheverton
,
R. D.
,
Iskander
,
S. K.
, and
Ball
,
D. G.
, 1988, “
Review of Pressurized-Water-Reactor-Related Thermal Shock Studies
,”
Fracture Mechanics: 19th Symposium
,
T. A.
Cruse
, ed.,
ASTM
,
Philadelphia, PA
, ASTM 969, pp.
752
766
.
25.
Cheverton
,
R. D.
,
Canonico
,
D. A.
,
Iskander
,
S. K.
,
Bolt
,
S. E.
,
Holz
,
P. P.
,
Nanstad
,
R. K.
, and
Stelzman
,
W. J.
, 1983, “
Fracture Mechanics Data Deduced From Thermal-Shock and Related Experiments With LWR Pressure Vessel Material
,”
ASME J. Pressure Vessel Technol.
0094-9930,
105
(
2
), pp.
102
110
.
26.
Naus
,
D. J.
,
Keeney-Walker
,
J.
,
Bass
,
B. R.
,
Robinson
,
G. C.
, Jr.
,
Iskander
,
S. K.
,
Fields
,
R. J.
,
deWit
,
R.
,
Low
,
S. R.
,
Schwartz
C. W.
,
Alexander
,
D. J.
, and
Johansson
,
I. B.
, 1990, “
Crack-Arrest Behavior in SEN Wide Plates of Low-Upper-Shelf Base Metal Tested Under Nonisothermal Conditions: WP-2 Series
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5451 (ORNL-6584).
27.
Bass
,
B. R.
,
Williams
,
P. T.
, and
Pugh
,
C. E.
, 2005, “
An Updated Correlation for Crack-Arrest Fracture Toughness for Nuclear Reactor Pressure Vessel Steels
,”
Int. J. Pressure Vessels Piping
0308-0161,
82
, pp.
489
495
.
28.
Bryan
,
R. H.
,
McCulloch
,
R. W.
,
Bass
,
B. R.
,
Merkle
,
J. G.
,
Bolt
,
S. E.
,
Nanstad
,
R. K.
,
Bryson
,
J. W.
,
Robinson
,
G. C.
,
Edmonds
,
D. P.
,
Thoms
,
K. R.
, and
Whitman
,
G. D.
, 1985, “
Pressurized Thermal Shock Test of 6-in.-Thick Pressure Vessels. PTSE-1: Investigation of Warm-Prestressing and Upper-Shelf Arrest
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. NUREG/CR-4106 (ORNL-6135).
29.
Bryan
,
R. H.
,
Bass
,
B. R.
,
Bolt
,
S. E.
,
Merkle
,
J. G.
,
Bryson
,
J. W.
,
Corwin
,
W. R.
,
Merkle
,
J. G.
,
Nanstad
,
R. K.
, and
Robinson
,
G. C.
, 1987, “
Pressurized Thermal Shock Test of 6-in.-Thick Pressure Vessels. PTSE-2: Investigation of Low-Tearing Resistance and Warm-Prestressing
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-4888 (ORNL-6377).
30.
Bryan
,
R. H.
,
Merkle
,
J. G.
,
Nanstad
,
R. K.
, and
Robinson
,
G. C.
, 1988, “
Pressurized Thermal Shock Experiments With Thick Vessels
,”
Fracture Mechanics: 19th Symposium
,
T. A.
Cruse
, ed.,
ASTM
,
Philadelphia, PA
, ASTM STP 969, pp.
767
783
.
31.
Bryan
,
R. H.
,
Bass
,
B. R.
,
Bolt
,
S. E.
,
Bryson
,
J. W.
,
Corwin
,
W. R.
,
Nanstad
,
R. K.
,
Merkle
,
J. G.
, and
Robinson
,
G. C.
, 1989, “
Performance of Low-Upper-Shelf Material Under Pressurized-Thermal-Shock Loading
,”
Nucl. Eng. Des.
0029-5493,
115
, pp.
359
367
.
32.
Pugh
,
C. E.
,
Naus
,
D. J.
,
Bass
,
B. R.
,
Nanstad
,
R. K.
,
deWit
,
R.
,
Fields
,
R. J.
, and
Low
,
S. R.
, III
, 1988, “
Wide-Plate Crack-Arrest Tests Utilizing a Prototypical Pressure Vessel Steel
,”
Int. J. Pressure Vessels Piping
0308-0161,
31
, pp.
165
85
.
33.
Hyres
,
J. W.
, 2003, “
Final Report: Examination of the Reactor Vessel (RV) Head Degradation at Davis-Besse
,” Report No. 1140-025-02-24, Lynchburg Technology Center for Metallurgical Examinations, BWXT Technologies, Inc., Nuclear and Environmental Operations, Lynchburg, VA.
34.
Nanstad
,
R. K.
, and
Sokolov
,
M. A.
, 2006, “
Fracture Toughness of Stainless Steel Cladding for Evaluation of the Degraded Davis-Besse RPV Head
,”
ASME
Paper No. PVP2006-ICPVT11-93308.
35.
Yin
,
S.
,
Bass
,
B. R.
,
McAfee
,
W. J.
, and
Williams
,
P. T.
, 2006, “
Experimental Program for Investigating the Influence of Cladding Defects on Burst Pressure
,”
ASME
Paper No. PVP2006-ICPVT11-93272.
36.
Williams
,
P. T.
,
Yin
,
S.
, and
Bass
,
B. R.
, 2006, “
Probabilistic Structural Mechanics Analysis of the Degraded Davis-Besse RPV Head
,”
ASME
Paper No. PVP2006-ICPVT11-93270.
37.
Corwin
,
W. R.
,
Berggren
,
R. G.
, and
Nanstad
,
R. K.
, 1985, “
Charpy Toughness and Tensile Properties of a Neutron-Irradiated Stainless Steel Submerged-Arc Weld Cladding Overlay
,”
Effects of Radiation on Materials: 12th International Symposium
,
F. A.
Garner
and
J. S.
Perrin
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 870, pp.
951
971
.
38.
Corwin
,
W. R.
, 1987, “
Reactor Vessel Cladding Separate Effects Studies
,”
Nucl. Eng. Des.
0029-5493,
98
, pp.
171
193
.
39.
Corwin
,
W. R.
,
Robinson
,
G. C.
,
Nanstad
,
R. K.
,
Merkle
,
J. G.
,
Berggren
,
R. G.
,
Goodwin
,
G. M.
,
Swain
,
R. L.
, and
Owings
,
T. D.
, 1985, “
Effects of Stainless Steel Weld Overlay Cladding on the Structural Integrity of Flawed Steel Plates in Bending, Series 1
,” Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-4015 (ORNL/TM-9390).
40.
Iskander
,
S. K.
,
Robinson
,
G. C.
,
Corwin
,
W. R.
,
Oland
,
B. C.
,
Alexander
,
D. J.
, and
Cook
,
K. V.
, 1992, “
Experimental Results of Tests to Investigate Flaw Behavior of Mechanically Loaded Stainless Steel Clad Plates
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5785 (ORNL/TM-11950).
41.
Iskander
,
S. K.
,
Alexander
,
D. J.
,
Bolt
,
S. E.
,
Cook
,
K. V.
,
Corwin
,
W. R.
,
Oland
,
B. C.
,
Nanstad
,
R. K.
, and
Robinson
,
G. C.
, 1989, “
Effect of Commercial Cladding on the Fracture Behavior of Pressure Vessel Steel Plates
,”
Nucl. Eng. Des.
0029-5493,
115
, pp.
349
357
.
42.
McAfee
,
W. J.
,
Bass
,
B. R.
,
Bryson
,
J. W.
, Jr.
, and
Pennell
,
W. E.
, 1995, “
Biaxial Loading Effects on Fracture Toughness of Reactor Pressure Vessel Steel
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-6273 (ORNL/TM-12866).
43.
Bass
,
B. R.
,
McAfee
,
W. J.
,
Williams
,
P. T.
, and
Pennell
,
W. E.
, 1999, “
Fracture Assessment of Shallow-Flaw Cruciform Beams Tested Under Uniaxial and Biaxial Loading Conditions
,”
Nucl. Eng. Des.
0029-5493,
188
, pp.
259
288
.
44.
Williams
,
P. T.
,
Bass
,
B. R.
, and
McAfee
,
W. J.
, 2000, “
Application of the Weibull Methodology to a Shallow-Flaw Cruciform Bend Specimen Tested Under Biaxial Loading Conditions
,”
Fatigue and Fracture Mechanics: 31st Volume
,
G. R.
Halford
and
J. P.
Gallagher
, eds.,
Am. Soc. for Testing and Materials
,
West Conshohocken, PA
, ASTM STP 1389, pp.
242
270
.
45.
Merkle
,
J. G.
, 1995, “
Patterns and Perspectives in Applied Mechanics
,”
Fracture Mechanics: 26th Volume
,
ASTM
,
Philadelphia, PA
, ASTM STP 1256, pp.
3
40
.
46.
Merkle
,
J. G.
, 1979, “
An Approximate Method of Elastic-Plastic Fracture Analyses for Nozzle Corner Cracks
,”
Elastic-Plastic Fracture
,
J. D.
Landes
,
J. A.
Begley
, and
G. A.
Clarke
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 668, pp.
674
702
.
47.
Wallin
,
K.
, 1984, “
The Scatter in KIc Results
,”
Eng. Fract. Mech.
0013-7944,
19
(
6
), pp.
1085
1093
.
48.
Merkle
,
J. G.
,
Wallin
,
K.
, and
McCabe
,
D. E.
, 1998, “
Technical Basis for an ASTM Standard on Determining the Reference Temperature, T0, for Ferritic Steels in the Transition Range
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5504 (ORNL/TM-13631).
49.
McCabe
,
D. E.
,
Nanstad
,
R. K.
,
Rosenfield
,
A. R.
,
Marschall
,
C. W.
, and
Irwin
,
G. R.
, 1991, “
Investigation of the Bases For Use of the KIc Curve
,”
Pressure Vessel Integrity
,
S.
Bhandari
,
R. O.
Doney
,
D. P.
Jones
,
M. S.
McDonald
,
W. E.
Pennell
, and
W. K.
Wilson
, eds.,
ASME
,
New York
, PVP-Vol.
213
.
50.
McCabe
,
D. E.
,
Merkle
,
J. G.
, and
Nanstad
,
R. K.
, 1994, “
A Perspective on Transition Temperature and KJc Data Characterization
,”
Fracture Mechanics: Twenty-Fourth Volume
,
J. D.
Landes
,
D. E.
McCabe
, and
J. A. M.
Boulet
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 1207, pp.
215
232
.
51.
U.S. Nuclear Regulatory Commission
, 1987, “
Format and Content of Plant-Specific Pressurized Thermal Shock Safety Analysis Reports for Pressurized Water Reactors
,” Regulatory Guide 1.154, U.S. Nuclear Regulatory Commission, Washington, DC.
52.
Williams
,
P. T.
,
Dickson
,
T. L.
, and
Yin
,
S.
, 2004, “
Fracture Analysis of Vessels – Oak Ridge, FAVOR, v04.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-6854 (ORNL/TM-2004/244).
53.
Dickson
,
T. L.
, and
EricksonKirk
,
M. T.
, 2005, “
An Overview of the Pressurized Thermal Shock Re-Evaluation
,”
ASME
Paper No. PVP2005-71638.
54.
1978, “
Flaw Evaluation Procedures: ASME Section XI
,” Electric Power Research Institute, Palo Alto, CA, EPRI Special Report No. EPRI NP-719-SR.
55.
Nanstad
,
R. K.
,
Keeney
,
J. A.
, and
McCabe
,
D. E.
, 1993, “
Preliminary Review of the Bases for the KIc Curve in the ASME Code
,” Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/NRC/LTR-93/15.
56.
Williams
,
P. T.
,
Bowman
,
K. O.
,
Bass
,
B. R.
, and
Dickson
,
T. L.
, 2001, “
Weibull Statistical Models of KIc/KIa Fracture Toughness Databases for Pressure Vessel Steels With an Application to PTS Assessments of Nuclear Reactor Pressure Vessels
,”
Int. J. Pressure Vessels Piping
0308-0161,
78
, pp.
165
178
.
57.
EricksonKirk
,
M. T.
,
Junge
,
M.
,
Arcieri
,
W.
,
Bass
,
B. R.
,
Beaton
,
R.
,
Bessette
,
D.
,
Chang
,
T. H. J.
,
Dickson
,
T.
,
Fletcher
,
C. D.
,
Kolaczkowski
,
A.
,
Malik
,
S.
,
Mintz
,
T.
,
Pugh
,
C.
,
Simonen
,
F.
,
Siu
,
N.
,
Whitehead
,
D.
,
Williams
,
P.
,
Woods
,
R.
, and
Yin
,
S.
, 2007, “
Technical Basis for Revision of the Pressurized Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61)
,” U.S. Nuclear Regulatory Commission, Rockville, MD, Vols. I and II, Summary Report No. NUREG-1806.
58.
Nichols
,
R. W.
, 1966, “
Work at the U.K. A.E.A. Reactor Materials Laboratory on the Embrittlement and Fracture of Steel
,”
Proceedings of the Colloquium on Brittle Fracture and Safety Problems in Nuclear Pressure Vessels
,
European Atomic Energy Community—Euratom
,
Brussels
.
59.
Johnson
,
R. E.
, and
Pasierb
,
E. J.
, 1966, “
Fracture Toughness of Irradiated A302B Steel as Influenced by Microstructure
,”
Trans. Am. Nucl. Soc.
0003-018X,
9
, pp.
390
392
.
60.
Potapovs
,
U.
, and
Hawthorne
,
J. R.
, 1969, “
The Effects of Residual Elements on 550F Irradiation Response of Selected Pressure Vessel Steels and Weldments
,”
Nuclear Applications
,
6
(
1
), pp.
27
46
.
61.
2009, “
Title 10
,” Code of Federal Regulations, Parts 0 to 50, U.S. Government Printing Office, Washington, DC.
62.
U.S. Nuclear Regulatory Commission
, 1988, “
Radiation Embrittlement of Reactor Vessel Materials
,” Regulatory Guide 1.99 Rev. 2.
63.
ASTM International
, 2002, “
Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels
,”
Annual Book of ASTM Standards
,
ASTM
,
West Conshohocken, PA
, E 185-02.
64.
Wang
,
J. A.
, and
Subramani
,
R.
, 2007, “
PR-EDB: Power Reactor Embrittlement Database Version 3
,” Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-2006/605.
65.
Davidson
,
J. A.
,
Ceschini
,
L. J.
,
Shogan
,
R. P.
, and
Raos
,
G. V.
, 1976, “
The Irradiated Dynamic Fracture Toughness of ASTM A533, Grade B, Class 1 Steel Plate and Submerged Arc Weldment
,” Heavy-Section Steel Technology Program Technical Report No. 41, Westinghouse Nuclear Energy Systems, Pittsburgh, PA.
66.
Hiser
,
A. L.
,
Loss
,
F. J.
, and
Menke
,
B. H.
, 1985, “
Fracture Toughness Characterization of Irradiated Low Upper-Shelf Welds
,”
Effects of Radiation on Materials: 12th International Symposium
,
F. A.
Garner
and
J. S.
Perrin
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 870, pp.
1131
1149
.
67.
Eason
,
E. D.
, and
Nelson
,
E. E.
, 1989, “
Improved Model for Predicting J-R Curves From Charpy Data, Phase I Final Report
,” USNRC Report No. NUREG/CR-5356, Oak Ridge National Laboratory, Oak Ridge, TN.
68.
Nanstad
,
R. K.
, and
Berggren
,
R. G.
, 1991, “
Irradiation Effects on Charpy Impact and Tensile Properties of Low Upper-Shelf Welds, HSSI Series 2 and 3
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5696 (ORNL/TM-11804).
69.
Nanstad
,
R. K.
, and
Berggren
,
R. G.
, 1993, “
Effects of Irradiation Temperature on Charpy and Tensile Properties of High-Copper, Low Upper-Shelf, Submerged-Arc Welds
,”
Effects of Radiation on Materials:16th International Symposium
,
A. S.
Kumar
,
D. S.
Gelles
,
R. K.
Nanstad
, and
E. A.
Little
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 1175.
70.
McGowan
,
J. J.
,
Nanstad
,
R. K.
, and
Thoms
,
K. R.
, 1988, “
Characterization of Irradiated Current-Practice Welds and A533 Grade B Class 1 Plate for Nuclear Pressure Vessel Service
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-4880 (ORNL-6484/V2).
71.
McGowan
,
J. J.
, and
Nanstad
,
R. K.
, 1987, “
A Statistical Analysis of Fracture Toughness of Irradiated Low-Alloy Steel Plate and Welds
,”
Influence of Radiation on Material Properties: 13th International Symposium (Part II)
,
F. A.
Garner
,
C. H.
Henager
, Jr.
, and
N.
Igata
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 956, pp.
569
589
.
72.
Nanstad
,
R. K.
,
Haggag
,
F. M.
,
McCabe
,
D. E.
,
Iskander
,
S. K.
,
Bowman
,
K. O.
, and
Menke
,
B. H.
, 1992, “
Irradiation Effects on Fracture Toughness of Two High-Copper Submerged-Arc Welds, HSSI Series 5
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5913, Vol. 1 (ORNL/TM-12156/V1).
73.
Nanstad
,
R. K.
,
McCabe
,
D. E.
,
Menke
,
B. H.
,
Iskander
,
S. K.
, and
Haggag
,
F. M.
, 1990, “
Effects of Irradiation on KIc Curves for High Copper Welds
,”
Effects of Radiation on Materials: 14th International Symposium
,
N. H.
Packan
,
R. E.
Stoller
, and
A. S.
Kumar
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 1046, Vol.
II
, pp.
214
233
.
74.
Nanstad
,
R. K.
,
McCabe
,
D. E.
,
Haggag
,
F. M.
,
Bowman
,
K. O.
, and
Downing
,
D. J.
, 1992, “
Statistical Analyses of Fracture Toughness Results for Two Irradiated High-Copper Welds
,”
Effects of Radiation on Materials: 15th International Symposium
,
R. E.
Stoller
,
A. S.
Kumar
, and
D. S.
Gelles
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 1125, pp.
270
291
.
75.
Iskander
,
S. K.
,
Corwin
,
W. R.
, and
R. K.
Nanstad
, 1990, “
Results of Crack-Arrest Tests on Two Irradiated High-Copper Welds
,” Oak Ridge National Laboratory, Oak Ridge, TN NUREG/CR-5584 (ORNL/TM-11575).
76.
Iskander
,
S. K.
,
Corwin
,
W. R.
, and
Nanstad
,
R. K.
, 1992, “
Effects of Irradiation on Crack-Arrest Toughness of Two High-Copper Welds
,”
Effects of Radiation on Materials: 15th International Symposium
,
R. E.
Stoller
,
A. S.
Kumar
, and
D. S.
Gelles
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 1125, pp.
251
269
.
77.
Iskander
,
S. K.
,
Corwin
,
W. R.
, and
R. K.
Nanstad
, 1994, “
Crack-Arrest Tests on Two Irradiated High-Copper Welds, Phase II: Results of Duplex-Type Experiments
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-6139 (ORNL/TM-12513).
78.
Haggag
,
F. M.
,
Corwin
,
W. R.
, and
Nanstad
,
R. K.
, 1990, “
Irradiation Effects on Strength and Toughness of Three-Wire Series-Arc Stainless Steel Weld Overlay Cladding
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5511.
79.
Haggag
,
F. M.
,
Corwin
,
W. R.
, and
Nanstad
,
R. K.
, 1990, “
Effects of Irradiation on the Fracture Properties of Stainless Steel Weld Overlay Cladding
,”
Nucl. Eng. Des.
0029-5493,
124
, pp.
129
141
.
80.
U.S. Nuclear Regulatory Commission
, 1996, “
Format and Content of Report for Thermal Annealing of Reactor Pressure Vessels
,” Regulatory Guide 1.162, U.S. Nuclear Regulatory Commission, Washington, DC.
81.
Sokolov
,
M. A.
,
Chernobaeva
,
A. A.
,
Nanstad
,
R. K.
,
Nikolaev
,
Yu. A.
, and
Korolev
,
Yu. N.
, 2000, “
Irradiation, Annealing and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels
,”
Effects of Radiation on Materials: 19th International Symposium
,
M. L.
Hamilton
,
A. S.
Kumar
,
S. T.
Rosinski
, and
M. L.
Grossbeck
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1366.
82.
Nanstad
,
R. K.
,
Tipping
,
Ph.
,
Kalkhof
,
R. D.
, and
Sokolov
,
M. A.
, 2004, “
Irradiation and Post-Annealing Reirradiation Effects on Fracture Toughness of RPV Steel Heat JRQ
,”
Effects of Radiation on Materials: 21st International Symposium
,
M. L.
Grossbeck
,
T. R.
Allen
,
R. G.
Lott
, and
A. S.
Kumar
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1447.
83.
Nanstad
,
R. K.
,
Niffenegger
,
M.
,
Kalkhof
,
R. D.
,
Miller
,
M. K.
,
Sokolov
,
M. A.
, and
Tipping
,
Ph.
, 2005, “
Fracture Toughness, Thermo-Electric Power, and Atom Probe Investigations of JRQ Steel in I, IA, IAR, and IARA Conditions
,”
J. ASTM Int.
1546-962X,
2
(
9
), available online at www.astm.orgwww.astm.org.
84.
Miller
,
M. K.
,
Nanstad
,
R. K.
,
Sokolov
,
M. A.
, and
Russell
,
K. F.
, 2006, “
The Effects of Irradiation, Annealing and Reirradiation on RPV Steels
,”
J. Nucl. Mater.
0022-3115,
351
, pp.
216
222
.
85.
Nanstad
,
R. K.
,
McCabe
,
D. E.
, and
Swain
,
R. L.
, 1999, “
Evaluation of Variability in Material Properties and Chemical Composition for Midland Reactor Weld WF-70
,”
Effects of Radiation on Materials: 18th International Symposium
,
R. K.
Nanstad
,
M. L.
Hamilton
,
F. A.
Garner
, and
A. S.
Kumar
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1325, pp.
125
156
.
86.
McCabe
,
D. E.
,
Nanstad
,
R. K.
,
Iskander
,
S. K.
,
Heatherly
,
D. W.
, and
Swain
,
R. L.
, 2000, “
Evaluation of WF-70 Weld Metal From the Midland Unit 1 Reactor Vessel
,” Oak Ridge National Laboratory, Oak Ridge, TN, NUREG/CR-5736 (ORNL/TM-13748).
87.
Iskander
,
S. K.
,
Nanstad
,
R. K.
,
McCabe
,
D. E.
, and
Swain
,
R. L.
, 2000, “
Effects of Irradiation on Crack-Arrest Toughness of a Low Upper-Shelf Energy, High-Copper Weld
,”
Effects of Radiation on Materials: 19th International Symposium
,
M. L.
Hamilton
,
A. S.
Kumar
,
S. T.
Rosinski
, and
M. L.
Grossbeck
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1366, pp.
245
265
.
88.
McCabe
,
D. E.
,
Nanstad
,
R. K.
, and
Sokolov
,
M. A.
, 2000, “
Effects of Irradiation and Thermal Annealing on Fracture Toughness of the Midland Reactor Weld WF-70
,”
Effects of Radiation on Materials: 19th International Symposium
,
M. L.
Hamilton
,
A. S.
Kumar
,
S. T.
Rosinski
, and
M. L.
Grossbeck
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1366, pp.
306
319
.
89.
Sokolov
,
M. A.
,
Nanstad
,
R. K.
, and
Miller
,
M. K.
, 2004, “
Fracture Toughness and Atom Probe Characterization of a Highly Embrittled RPV Weld
,”
J. ASTM Int.
1546-962X,
1
(
9
), available online at available online at www.astm.orgwww.astm.org.
90.
Nanstad
,
R. K.
,
Sokolov
,
M. A.
, and
McCabe
,
D. E.
, 2008, “
Applicability of the Fracture Toughness Master Curve to Irradiated Highly Embrittled Steel and Intergranular Fracture
,”
J. ASTM Int.
1546-962X,
5
(
3
), available online at www.astm.orgwww.astm.org.
91.
Sokolov
,
M. A.
, and
Nanstad
,
R. K.
, 2006, “
Fracture Toughness Characterization of Midland Beltline Weld After High Dose of Irradiation
,”
ASME
Paper No. PVP2006-ICPVT11–93321.
92.
Nanstad
,
R. K.
,
McCabe
,
D. E.
,
Sokolov
,
M. A.
,
English
,
C. A.
, and
Ortner
,
S. R.
, 2001, “
Investigation of Temper Embrittlement in Reactor Pressure Vessel Steels Following Thermal Aging, Irradiation, and Thermal Annealing
,”
Effects of Radiation on Materials: 20th International Symposium
,
S. T.
Rosinski
,
M. L.
Grossbeck
,
T. R.
Allen
, and
A. S.
Kumar
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1405, pp.
356
382
.
93.
Sokolov
,
M. A.
,
McCabe
,
D. E.
,
Davidov
,
Y. A.
, and
Nanstad
,
R. K.
, 1998, “
Use of Precracked Charpy and Smaller Specimens to Establish the Master Curve
,”
Small Specimen Test Techniques
,
W. R.
Corwin
and
E.
van Walle
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1329, pp.
238
252
.
94.
Nanstad
,
R. K.
, and
Scibetta
,
M.
, 2007, “
IAEA Coordinated Research Project on Master curve Approach to Monitor Fracture Toughness of RPV Steels: Effects of Bias, Constraint, and Geometry
,”
ASME
Paper No. PVP200726231.
95.
Nanstad
,
R. K.
,
McCabe
,
D. E.
,
Sokolov
,
M. A.
, and
Merkle
,
J. G.
, 2007, “
Experimental Evaluation of Deformation and Constraint Characteristics in Precracked Charpy and Other Three-Point Bend Specimens
,”
ASME
Paper No. PVP200726651.
96.
Sokolov
,
M. A.
, and
Nanstad
,
R. K.
, 1999, “
Comparison on Irradiation-Induced Shifts of KJc and Charpy Impact Toughness for Reactor Pressure Vessel Steels
,”
Effects of Radiation on Materials: 18th International Symposium
,
R. K.
Nanstad
,
M. L.
Hamilton
,
F. A.
Garner
, and
A. S.
Kumar
, eds.,
ASTM
,
West Conshohocken, PA
, ASTM STP 1325, pp.
167
190
.
97.
McCabe
,
D. E.
,
Merkle
,
J. G.
, and
Wallin
,
K.
, 2005,
An Introduction to the Development and Use of the Master Curve Method
,
ASTM
,
West Conshohocken, PA
.
98.
Iskander
,
S. K.
,
Hutton
,
J. T.
,
Creech
,
L. E.
,
Nanstad
,
R. K.
,
Manneschmidt
,
E. T.
,
Rosseel
,
T. M.
, and
Bishop
,
P. S.
, 1999, “
Preliminary Results From Charpy Impact Testing of Irradiated JPDR Weld Meta and Commissioning of a Facility for Machining of Irradiated Materials
,” Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/NRC/LTR-99/23.
99.
Eason
,
E. D.
,
Odette
,
G. R.
,
Nanstad
,
R. K.
, and
Yamamoto
,
T.
, 2007, “
A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels
,” Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM-2006/530.
100.
Stoller
,
R. E.
, 1993, “
Modeling the Influence of Irradiation Temperature and Displacement Rate on Radiation-Induced Hardening in Ferritic Steels
,”
Effects of Radiation on Materials: 16th International Symposium
,
A. S.
Kumar
,
D. S.
Gelles
,
R. K.
Nanstad
, and
E. A.
Little
, eds.,
ASTM
,
Philadelphia, PA
, ASTM STP 1175, pp.
394
423
.
101.
Miller
,
M. K.
,
Sokolov
,
M. A.
,
Nanstad
,
R. K.
, and
Russell
,
K. F.
, 2006, “
APT Characterization of High Nickel RPV Steels
,”
J. Nucl. Mater.
0022-3115,
351
, pp.
187
196
.
102.
Odette
,
G. R.
, and
Lucas
,
G. E.
, 1989, “
The Effect of Nickel on Radiation Hardening of Pressure Vessel Steels
,”
Effects of Irradiation on Materials—14th Symposium
,
ASTM
,
Philadelphia, PA
, ASTM-STP-1046, pp.
323
347
.
103.
2008, Light Water Reactor Sustainability Program Plan, Fiscal Year 2009, Prepared for DOE Office of Nuclear Energy by Idaho National Laboratory, Idaho Falls, ID.
104.
Odette
,
G. R.
, and
Nanstad
,
R. K.
, 2009, “
Predictive Reactor Pressure Vessel Steel Irradiation Embrittlement Models: Issues and Opportunities
,”
J. Mets.
,
61
(
7
), pp.
19
25
.
You do not currently have access to this content.