A numerical approach for the stress concentration of periodic collinear holes in an infinite plate in tension is presented. It involves the fictitious stress method and a generalization of Bueckner's principle. Numerical examples are concluded to show that the numerical approach is very efficient and accurate for analyzing the stress concentration of periodic collinear holes in an infinite plate in tension. The stress concentration of periodic collinear square holes in an infinite plate in tension is studied in detail by using the numerical approach. The calculated stress concentration factor is proven to be accurate.
Issue Section:
Design and Analysis
References
1.
Ling
, C. B.
, 1948
, “On the Stresses in a Plate Containing Two Circular Holes
,” J Appl. Phys.
, 19
(1
), pp. 77
–82
.10.1063/1.16978752.
Atsumi
, A.
, 1956
, “On the Stresses In a Strip Under Tension and Containing Two Equal Circular Holes Placed Longitudinally
,” ASME J. Appl. Mech.
, 23
, pp. 555
–562
.3.
Haddon
, R. A.
, 1967
, “Stresses In an Infinite Plate With Two Unequal Circular Holes
,” Q. J. Mech. Appl. Math.
, 20
(3
), pp. 277
–291
.10.1093/qjmam/20.3.2774.
Kienzler
, R.
, and Zhuping
, D.
, 1987
, “On the Distribution of Hoop Stresses Around Circular Holes in Elastic Sheets
,” ASME J. Appl. Mech.
, 54
(1
), pp. 110
–114
.10.1115/1.31729435.
Greenwood
, J. A.
, 1989
, “Exact Formulate for Stresses Around Circular Holes and Inclusions
,” Int. J. Mech. Sci.
, 31
(3
), pp. 219
–227
.10.1016/0020-7403(89)90112-46.
Howland
, R. C. J.
, 1935
, “Stress In a Plate Containing an Infinite Row of Holes
,” Proc. R. Soc. London, Ser. A
, 148
(864
), pp. 471
–491
.10.1098/rspa.1935.00307.
Isida
, M.
, and Igawa
, H.
, 1991
, “Analysis of a Zig-Zag Array of Circular Holes in an Infinite Solid Under Uniaxial Tension
,” Int. J. Solids Struct.
, 27
(7
), pp. 849
–864
.10.1016/0020-7683(91)90020-G8.
Meguid
, S. A.
, Kalamkarov
, A. L.
, and Yao
, J.
, 1996
, “Analytical, Numerical, and Experimental Studies of Effective Elastic Properties of Periodically Perforated Materials
,” ASME J. Eng. Mater. Technol.
, 118
(1
), pp. 43
–48
.10.1115/1.28059329.
Chen
, Y. Z.
, and Lin
, X. Y.
, 2007
, “Solution of Periodic Group Circular Hole Problems by Using the Series Expansion Variational Method
,” Int. J. Numer. Meth. Eng.
, 69
(7
), pp. 1405
–1422
.10.1002/nme.181210.
Chen
, Y. Z.
, 2011
, “Solutions of Periodic Notch Problems With Arbitrary Configuration by Using Boundary Integral Equation and Superposition Method
,” Acta Mech.
, 221
(3–4
), pp. 251
–260
.10.1007/s00707-011-0499-611.
Horii
, H.
, and Nemat-Nasser
, S.
, 1985
, “Elastic Fields of Interacting Inhomogeneities
,” Int. J. Solids Struct.
, 21
(7
), pp. 731
–745
.10.1016/0020-7683(85)90076-912.
Meguid
, S. A.
, and Shen
, C. L.
, 1992
, “On the Elastic Fields of Interacting Defense and Main Hole Systems
,” Int. J. Mech. Sci.
, 34
(1
), pp. 17
–29
.10.1016/0020-7403(92)90050-Q13.
Ting
, K.
, Chen
, K. T.
, and Yang
, W. S.
, 1999
, “Boundary Element Alternating Method Applied to Analyze the Stress Concentration Problems of Multiple Elliptical Holes in an Infinite Domain
,” Nucl. Eng. Des.
, 187
(3
), pp. 303
–313
.10.1016/S0029-5493(98)00301-X14.
Inglis
, E.
, 1913
, “Stress in a Plate Due to the Presence of Cracks and Sharp Corners
,” T. Inst. Naval Arch.
, 55
, pp. 219
–242
.15.
Crouch
, S. L.
, and Starfied
, A. M.
, 1983
, Boundary Element Method in Solid Mechanics
, Geore Allon & Unwin
, Bonton, London, Sydney
.16.
Yan
, X.
, 2006
, “An Effective Numerical Approach for Multiple Void–Crack Interaction
,” ASME J. Appl. Mech.
, 73
(4
), pp. 525
–535
.10.1115/1.212795517.
Yan
, X.
, 2005
, “An Efficient and Accurate Numerical Method of SIFs Calculation of a Branched Crack
,” ASME J. Appl. Mech.
, 72
(3
), pp. 330
–340
.10.1115/1.179644918.
Bueckner
, H. F.
, 1958
, “The Propagation of Cracks and the Energy of Elastic Deformation
,” ASME J. Appl. Mech.
, 80
, pp. 1225
–1230
.19.
Masako
, N.
, 1986
, Stress Concentration
, China Machine Press
, Beijing, China
.20.
O'Donnell
, W. J.
, and Langer
, B. F.
, 1962
, “Design of Perforated Plates
,” J. Eng. Ind.
, 84
(3
), pp. 307
–320
.10.1115/1.366748321.
Slot
, T.
, and O'Donnell
, W. J.
, 1971
, “Effective Elastic Constants of Thick Perforated Plates With Square and Triangular Penetration Patterns
,” ASME J. Eng. Ind.
, 93
(4
), pp. 935
–942
.10.1115/1.342808722.
Reinhardt
, W.
, 2000
, “An Equivalent Solid Based Analysis of Broached Tube Support Plates
,” ASME Press. Vessels Pip. Div.
, 400
, pp. 243
–249
.23.
Kasraie
, B.
, Porowski
, J. S.
, Badlani
, M. L.
, and O'Donnell
, W. J.
, 1985
, “Irregular Ligaments in Tubeshellts With Square Penetration Patterns
,” ASME Press. Vessels Pip. Div.
(Publication) PVP, 98
(2
), pp. 53
–60
.24.
Porowski
, J.
, and O'Donnell
, W. J.
, 1974
, “Effective Plastic Constants for Perforated Materials
,” ASME Pressure Vessels and Piping Technol.
, 96
(3
), pp. 234
–241
.10.1115/1.345417325.
Gordon
, J. L.
, and Jones
, D. P.
, 2002
, “Application of a Sixth Order Generalized Stress Function for Determining Limit Loads for Plates With Triangular Penetration Patterns
,” ASME Pressure Vessels and Piping Conference Division
, Vancouver, BC, Canada, Aug. 5–9, Vol. 441
, pp. 153
–162
.26.
Porowski
, J. S.
, O'Donnell
, W. J.
, Tanaka
, T.
, and Badlani
, M.
, 1980
, “Stress and Strain Concentrations in Perforated Structures Under Steady Creep Conditions
,” ASME J. Pressure Vessel Technol.
, 102
(4
), pp. 419
–429
.10.1115/1.326335327.
Porowski
, J.
, and O'Donnell
, W. J.
, 1975
, “Plastic Strength of Perforated Plates With Square Penetration Patterns
,” ASME J. Pressure Vessel Technol.
, 97
(3
), pp. 146
–154
.10.1115/1.345428828.
Fil'shtinskii
, L. A.
, 1964
, “Stresses and Displacements in an Elastic Sheet Weakened by a Doubly-Periodic Set of Equal Circular Holes
,” J. Appl. Math. Mech.
, 28
(3
), pp. 530
–543
.10.1016/0021-8928(64)90095-429.
Fotoohi
, K.
, and Mitri
, H. S.
, 1996
, “Non-Linear Fault Behavior Near Underground Excavations-A Boundary Element Approach
,” Int. J. Numer. Anal. Methods Geomech.
, 20
(3
), pp. 173
–190
.10.1002/(SICI)1096-9853(199603)20:3<173::AID-NAG814>3.0.CO;2-HCopyright © 2015 by ASME
You do not currently have access to this content.