Both deterministic and probabilistic methods are used to assess the integrity of a reactor pressure vessel (RPV) subjected to pressurized thermal shocks (PTSs). The FAVOR code is applied to calculate the probabilities for crack initiation and failure of the RPV subjected to two transients, by considering crack distributions based on cracks observed in the Shoreham and pressure vessel research user facility (PVRUF) RPVs. The crack parameters, i.e., crack density, depth, aspect ratio, orientation, and location are assumed as random variables following different distributions. KI of the cracks with the same depth increases with its aspect ratio. Both KI and KIc at the crack tip increase with crack depth, which is the reason why a deeper crack does not necessarily lead to a higher failure probability. The underclad crack is the most critical crack and the deeper crack is the least critical one in this study. Considering uncertainties of the transients results in higher failure probabilities.

References

1.
Qian
,
G.
,
Niffenegger
,
M.
, and
Li
,
S.
,
2011
, “
Probabilistic Analysis of Pipelines With Corrosion Defects by Using FITNET FFS Procedure
,”
Corros. Sci.
,
53
(
3
), pp.
855
861
.10.1016/j.corsci.2010.10.014
2.
Qian
,
G.
, and
Niffenegger
,
M.
,
2011
, “
Probabilistic Fracture Assessment of Piping Systems Based on FITNET FFS Procedure
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
714
722
.10.1016/j.nucengdes.2011.01.019
3.
Qian
,
G.
,
Niffenegger
,
M.
,
Zhou
,
W.
, and
Li
,
S.
,
2013
, “
Effect of Correlated Input Parameters on the Failure Probability of Pipelines With Corrosion Defects by Using FITNET FFS Procedure
,”
Int. J. Press. Vessels Pip.
,
105–106
, pp.
19
27
.10.1016/j.ijpvp.2013.02.004
4.
Qian
,
G.
,
Niffenegger
,
M.
,
Karanki
,
D.
, and
Li
,
S.
,
2013
, “
Probabilistic Leak-Before-Break Analysis With Correlated Input Parameters
,”
Nucl. Eng. Des.
,
254
, pp.
266
271
.10.1016/j.nucengdes.2012.10.005
5.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Procedures, Methods and Computer Codes for the Probabilistic Assessment of Reactor Pressure Vessels Subjected to Pressurized Thermal Shocks
,”
Nucl. Eng. Des.
,
258
, pp.
35
50
.10.1016/j.nucengdes.2013.01.030
6.
Qian
,
G.
, and
Niffenegger
,
M.
,
2014
, “
Deterministic and Probabilistic Analysis of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks
,”
Nucl. Eng. Des.
,
273
, pp.
381
395
.10.1016/j.nucengdes.2014.03.032
7.
Qian
,
G.
,
Gonzalez-Albuixech
, V
. F.
, and
Niffenegger
,
M.
,
2014
, “
Probabilistic PTS Analysis of a Reactor Pressure Vessel by Considering Realistic Crack Distributions
,”
Nucl. Eng. Des.
,
270
, pp.
312
324
.10.1016/j.nucengdes.2013.12.062
8.
Niffenegger
,
M.
, and
Reichlin
,
K.
,
2012
, “
The Proper Use of Thermal Expansion Coefficients in Finite Element Calculations
,”
Nucl. Eng. Des.
,
243
, pp.
356
359
.10.1016/j.nucengdes.2011.12.006
9.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Investigation on Constraint Effect of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks
,”
ASME
Paper No. PVP2013-98161.10.1115/PVP2013-98161
10.
Qian
,
G.
, and
Niffenegger
,
M.
,
2013
, “
Integrity Analysis of a Reactor Pressure Vessel Subjected to Pressurized Thermal Shocks by Considering Constraint Effect
,”
Eng. Fract. Mech.
,
112–113
, pp.
14
25
.10.1016/j.engfracmech.2013.09.009
11.
Qian
,
G.
,
Gonzalez-Albuixech
,
V. F.
, and
Niffenegger
,
M.
,
2014
, “
In-Plane and Out-of-Plane Constraint Effects Under Pressurized Thermal Shocks
,”
Int. J. Solids Struc.
,
51
(
6
), pp.
1311
1321
.10.1016/j.ijsolstr.2013.12.021
12.
Simonen
,
F. A.
,
Doctor
,
S. R.
,
Schuster
,
G. J.
, and
Heasler
,
P. G.
,
2004
,
A Generalized Procedure for Generating Flaw-Related Inputs for the FAVOR Code
,
NRC
Paper No. NUREG/CR-6817 Revision 1, U.S. Nuclear Regulatory Commission, Washington, D.C.http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6817
13.
Williams
,
P. T.
,
Dickson
,
T. L.
, and
Yin
,
S.
,
2004
,
Fracture Analysis of Vessels-Oak Ridge FAVOR, v 04.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations
,
NRC
Paper No. NUREG/CR-685, U.S. Nuclear Regulatory Commission, Washington, D.C.http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6854
14.
U.S. Nuclear Regulatory Commission
,
2010
, 50.61a Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events,
NRC
Paper No. 5061a.http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-00
15.
U.S. Nuclear Regulatory Commission
,
1988
, Regulatory Guide, No. 1.99, Revision 2, Radiation Embrittlement of Reactor Vessel Materials,
NRC
Paper No. 1.99.http://pbadupws.nrc.gov/docs/ML0037/ML003740284.pdf
16.
VISA-II—A Computer Code for Predicting the Probability of Reactor Pressure Vessel Failure, NUREG/CR-4486.
You do not currently have access to this content.