Co-firing biomass with traditional fuels is becoming increasingly relevant to thermal power plant operators due to increasingly stringent regulations on greenhouse gas emissions. It has been found that when biomass is co-fired, an altered ash composition is formed, which leads to increased levels of corrosion of the superheater tube walls. Synthetic salt, which is representative of the ash formed in the co-firing of a 70% peat and 30% biomass mixture, has been produced and applied to samples of P91 at 540 °C for up to 28 days. This paper presents results for oxide layer thickness and loss of substrate from testing. Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDX) element maps are obtained and presented in order to gain an understanding of the complex corrosion mechanism which occurs. A finite-element (FE) methodology is presented which combines corrosion effects with creep damage in pressurized tubes. The effects of corrosion tube wall loss and creep damage on tube stresses and creep life are investigated.

References

1.
Hupa
,
M.
,
2012
, “
Ash-Related Issues in Fluidized-Bed Combustion of Biomasses: Recent Research Highlights
,”
Energy Fuels
,
26
(
1
), pp.
4
14
.
2.
Jappe Frandsen
,
F.
,
2005
, “
Utilizing Biomass and Waste for Power Production—A Decade of Contributing to the Understanding, Interpretation and Analysis of Deposits and Corrosion Products
,”
Fuel
,
84
(
10
), pp.
1277
1294
.
3.
Syed
,
A. U.
,
Simms
,
N. J.
, and
Oakey
,
J. E.
,
2012
, “
Fireside Corrosion of Superheaters: Effects of Air and Oxy-Firing of Coal and Biomass
,”
Fuel
,
101
, pp.
62
73
.
4.
Dubey
,
J. S.
,
Chilukuru
,
H.
,
Chakravartty
,
J. K.
,
Schwienheer
,
M.
,
Scholz
,
A.
, and
Blum
,
W.
,
2005
, “
Effects of Cyclic Deformation on Subgrain Evolution and Creep in 9–12% Cr-Steels
,”
Mater. Sci. Eng. A
,
406
(1–2), pp.
152
159
.
5.
Abe
,
F.
,
2008
, “
Precipitate Design for Creep Strengthening of 9% Cr Tempered Martensitic Steel for Ultra-Supercritical Power Plants
,”
Sci. Technol. Adv. Mater.
,
9
(
1
), p.
013002
.
6.
Barrett
,
R. A.
,
Farragher
,
T. P.
,
Hyde
,
C. J.
,
O'Dowd
,
N. P.
,
O'Donoghue
,
P. E.
, and
Leen
,
S. B.
,
2014
, “
A Unified Viscoplastic Model for High Temperature Low Cycle Fatigue of Service-Aged P91 Steel
,”
ASME J. Pressure Vessel Technol.
,
136
(
2
), p.
021402
.
7.
Zarrabi
,
K.
,
1993
, “
Estimation of Boiler Tube Life in Presence of Corrosion and Erosion Processes
,”
Int. J. Pressure Vessels Pipes
,
53
(
2
), pp.
351
358
.
8.
Purbolaksono
,
J.
,
Khinani
,
A.
,
Rashid
,
A. Z.
,
Ali
,
A. A.
, and
Nordin
,
N. F.
,
2009
, “
Prediction of Oxide Scale Growth in Superheater and Reheater Tubes
,”
Corros. Sci.
,
51
(
5
), pp.
1022
1029
.
9.
Viswanathan
,
R.
,
Paterson
,
S. R.
,
Grunloh
,
H.
, and
Gehl
,
S.
,
1994
, “
Life Assessment of Superheater/Reheater Tubes in Fossil Boilers
,”
ASME J. Pressure Vessel Technol.
,
116
(
1
), pp.
1
16
.
10.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
, and
Williams
,
J. A.
,
2006
, “
Finite-Element Creep Damage Analyses of P91 Pipes
,”
Int. J. Pressure Vessels Pipes
,
83
(
11–12
), pp.
853
863
.
11.
Hyde
,
T. H.
,
Becker
,
A. A.
,
Sun
,
W.
,
Yaghi
,
A.
,
Thomas
,
A.
, and
Seliger
,
P.
,
2006
, “
Finite Element Creep Failure Analyses of P91 Large Tensile Cross-Weld Specimens Tested At 625 °C
,”
5th International Conference on Mechanics and Materials in Design
, Porto, Portugal, July 24–26.
12.
Wenman
,
M. R.
,
Trethewey
,
K. R.
,
Jarman
,
S. E.
, and
Chard-Tuckey
,
P. R.
,
2008
, “
A Finite-Element Computational Model of Chloride-Induced Transgranular Stress-Corrosion Cracking of Austenitic Stainless Steel
,”
Acta Mater.
,
56
(
16
), pp.
4125
4136
.
13.
Sawada
,
K.
,
Fujitsuka
,
M.
,
Tabuchi
,
M.
, and
Kimura
,
K.
,
2009
, “
Effect of Oxidation on the Creep Rupture Life of ASME T23 Steel
,”
Int. J. Pressure Vessels Pipes
,
86
(
10
), pp.
693
698
.
14.
Fournier
,
B.
,
Sauzay
,
M.
,
Caës
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
,
Man
,
J.
,
Gillia
,
O.
,
Lemoine
,
P.
, and
Pineau
,
A.
,
2008
, “
Creep-Fatigue Oxidation Interactions in a 9Cr-1Mo Martensitic Steel—Part II : Effect of Compressive Holding Period on Fatigue Lifetime
,”
Int. J. Fatigue
,
30
(
4
), pp.
663
676
.
15.
Fournier
,
B.
,
Sauzay
,
M.
,
Caës
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
,
Man
,
J.
,
Gillia
,
O.
,
Lemoine
,
P.
, and
Pineau
,
A.
,
2008
, “
Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel—Part III: Lifetime Prediction
,”
Int. J. Fatigue
,
30
(10–11), pp.
1797
1812
.
16.
Fournier
,
B.
,
Sauzay
,
M.
,
Caës
,
C.
,
Noblecourt
,
M.
,
Mottot
,
M.
,
Bougault
,
A.
,
Rabeau
,
V.
, and
Pineau
,
A.
,
2008
, “
Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel—Part I: Effect of Tensile Holding Period on Fatigue Lifetime
,”
Int. J. Fatigue
,
30
(
4
), pp.
649
662
.
17.
Swindeman
,
R. W.
,
Santella
,
M. L.
,
Maziasz
,
P. J.
,
Roberts
,
B. W.
, and
Coleman
,
K.
,
2004
, “
Issues in Replacing Cr-Mo Steels and Stainless Steels With 9Cr-1Mo-V Steel
,”
Int. J. Pressure Vessels Pipes
,
81
(
6
), pp.
507
512
.
18.
Masuyama
,
F.
,
2001
, “
History of Power Plants and Progress in Heat Resistant Steels
,”
ISIJ Int.
,
41
(
6
), pp.
612
625
.
19.
Nielsen
,
H. P.
,
Frandsen
,
F. J.
,
Dam-Johansen
,
K.
, and
Baxter
,
L. L.
,
2000
, “
The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers
,”
Prog. Energy Combust. Sci.
,
26
(
3
), pp.
283
298
.
20.
Tillman
,
D. A.
,
Duong
,
D.
, and
Miller
,
B.
,
2009
, “
Chlorine in Solid Fuels Fired in Pulverized Fuel Boilers—Sources, Forms, Reactions, and Consequences: A Literature Review
,”
Energy Fuels
,
23
(
7
), pp.
3379
3391
.
21.
Asteman
,
H.
, and
Spiegel
,
M.
,
2007
, “
Investigation of the HCl (g) Attack on Pre-Oxidized Pure Fe, Cr, Ni and Commercial 304 Steel at 400 °C
,”
Corros. Sci.
,
49
(
9
), pp.
3626
3637
.
22.
Grabke
,
H. J.
,
Reese
,
E.
, and
Spiegel
,
M.
,
1995
, “
The Effects of Chlorides, Hydrogen Chloride and Sulfur Dioxide in the Oxidation of Steels Below Deposits
,”
Corros. Sci.
,
37
(
7
), pp.
1023
1043
.
23.
Albina
,
D. O.
, and
Themelis
,
N. J.
,
2005
, “
Theory and Experience on Corrosion of Waterwall and Superheater Tubes of Waste-to-Energy Facilities
,”
Master's thesis, Department of Earth and Environmental Engineering, Fu Foundation School of Engineering and Applied Science
, Columbia University, New York.
24.
Pettersson
,
J.
,
Svensson
,
J.-E.
, and
Johansson
,
L.-G.
,
2009
, “
KCl-Induced Corrosion of a 304-Type Austenitic Stainless Steel in O2 and in O2 + H2O Environment: The Influence of Temperature
,”
Oxid. Met.
,
72
(
3–4
), pp.
159
177
.
25.
Pettersson
,
J.
,
Folkeson
,
N.
,
Johansson
,
L. G.
, and
Svensson
,
J. E.
,
2011
, “
The Effects of KCl, K2SO4 and K2CO3 on the High Temperature Corrosion of a 304-Type Austenitic Stainless Steel
,”
Oxid. Met.
,
76
(1), pp.
93
109
.
26.
Karlsson
,
S.
,
Pettersson
,
J.
,
Johansson
,
L.-G.
, and
Svensson
,
J.-E.
,
2012
, “
Alkali Induced High Temperature Corrosion of Stainless Steel: The Influence of NaCl, KCl and CaCl2
,”
Oxid. Met.
,
78
(1), pp.
83
102
.
27.
Lehmusto
,
J.
,
Skrifvars
,
B.-J.
,
Yrjas
,
P.
, and
Hupa
,
M.
,
2013
, “
Comparison of Potassium Chloride and Potassium Carbonate With Respect to Their Tendency to Cause High Temperature Corrosion of Stainless 304L Steel
,”
Fuel Process. Technol.
,
105
, pp.
98
105
.
28.
Uusitalo
,
M. A.
,
Vuoristo
,
P. M. J.
, and
Mäntylä
,
T. A.
,
2003
, “
High Temperature Corrosion of Coatings and Boiler Steels Below Chlorine-Containing Salt Deposits
,”
Corros. Sci.
,
46
(
6
), pp.
1311
1331
.
29.
Zahs
,
A.
,
Spiegel
,
M.
, and
Grabke
,
H. J.
,
2000
, “
Chloridation and Oxidation of Iron, Chromium, Nickel and Their Alloys in Chloridizing and Oxidizing Atmospheres at 400–700 °C
,”
Corros. Sci.
,
42
(
6
), pp.
1093
1122
.
30.
Zahs
,
A.
,
Spiegel
,
M.
, and
Grabke
,
H. J.
,
1999
, “
The Influence of Alloying Elements on the Chlorine-Induced High Temperature Corrosion of Fe-Cr Alloys in Oxidizing Atmospheres
,”
Mater. Corros.
,
50
(
10
), pp.
561
578
.
31.
Folkeson
,
N.
,
Johansson
,
L.-G.
, and
Svensson
,
J.-E.
,
2007
, “
Initial Stages of the HCl-Induced High-Temperature Corrosion of Alloy 310
,”
J. Electrochem. Soc.
,
154
(
9
), p.
C515
.
32.
Skrifvars
,
B.-J.
,
Backman
,
R.
,
Hupa
,
M.
,
Salmenoja
,
K.
, and
Vakkilainen
,
E.
,
2008
, “
Corrosion of Superheater Steel Materials Under Alkali Salt Deposits—Part 1: The Effect of Salt Deposit Composition and Temperature
,”
Corros. Sci.
,
50
(
5
), pp.
1274
1282
.
33.
Skrifvars
,
B.-J.
,
Backman
,
R.
,
Hupa
,
M.
,
Salmenoja
,
K.
, and
Westén-Karlsson
,
M.
,
2010
, “
Corrosion of Super-Heater Steel Materials Under Alkali Salt Deposits—Part 2: SEM Analyses of Different Steel Materials
,”
Corros. Sci.
,
52
(
3
), pp.
1011
1019
.
34.
O'Hagan
,
C. P.
,
O'Brien
,
B. J.
,
Griffin
,
F.
,
Hooper
,
B.
,
Leen
,
S. B.
, and
Monaghan
,
R. F. D.
,
2015
, “
Porosity-Based Corrosion Model for Alkali Halide Ash Deposits During Biomass Cofiring
,”
Energy Fuels
,
29
(
5
), pp.
3082
3095
.
35.
O'Hagan
,
C. P.
,
O'Brien
,
B. J.
,
Leen
,
S. B.
, and
Monaghan
,
R. F. D.
,
2014
, “
Experimental Characterisation of Materials for Biomass Co-Firing
,”
22nd European Biomass Conference and Exhibition
, Hamburg, Germany, June 23–26, Vol.
22
, pp.
23
26
.
36.
Ansys,
2012
, “
abaqus Analysis Manual v6.12
,” Dassault Systèmes, Providence, RI.
37.
Kachanov
,
I.
, and
Shagalina
,
L. M.
,
1958
, “
Akad Naul
,”
Akad. Nauk. SSSR
,
8
(
26
), pp. 26–31.
38.
Hayhurst
,
D. R.
,
1972
, “
Creep Rupture Under Multi-Axial States of Stress
,”
J. Mech. Phys. Solids
,
20
(
6
), pp.
381
382
.
39.
Wang
,
C.
,
Chen
,
J.
,
Xia
,
Z. C.
, and
Ren
,
F.
,
2013
, “
Die Wear Prediction by Defining Three-Stage Coefficient K for AHSS Sheet Metal Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
69
(1), pp.
797
803
.
40.
Zhang
,
T.
,
McHugh
,
P. E.
, and
Leen
,
S. B.
,
2011
, “
Computational Study on the Effect of Contact Geometry on Fretting Behaviour
,”
Wear
,
271
(
9–10
), pp.
1462
1480
.
41.
Grogan
,
J. A.
,
Leen
,
S. B.
, and
McHugh
,
P. E.
,
2013
, “
Optimizing the Design of a Bioabsorbable Metal Stent Using Computer Simulation Methods
,”
Biomaterials
,
34
(
33
), pp.
8049
8060
.
42.
Grabke
,
H. J.
,
Spiegel
,
M.
, and
Zahs
,
A.
,
2004
, “
Role of Alloying Elements and Carbides in the Chlorine-Induced Corrosion of Steels and Alloys
,”
Mater. Res.
,
7
(
1
), pp.
89
95
.
43.
Hussain
,
T.
,
Syed
,
A. U.
, and
Simms
,
N. J.
,
2013
, “
Trends in Fireside Corrosion Damage to Superheaters in Air and Oxy-Firing of Coal/Biomass
,”
Fuel
,
113
, pp.
787
797
.
44.
Folkeson
,
N.
,
Jonsson
,
T.
,
Halvarsson
,
M.
,
Johansson
,
L.-G.
, and
Svensson
,
J.-E.
,
2011
, “
The Influence of Small Amounts of KCl(s) on the High Temperature Corrosion of a Fe-2.25Cr-1Mo Steel at 400 and 500 °C
,”
Mater. Corros.
,
62
(
7
), pp.
606
615
.
45.
Nielsen
,
H. P.
,
Frandsen
,
F. J.
, and
Dam-Johansen
,
K.
,
1999
, “
Lab-Scale Investigations of High-Temperature Corrosion Phenomena in Straw-Fired Boilers
,”
Energy Fuels
,
13
(
6
), pp.
1114
1121
.
46.
Kraus
,
H.
,
1980
,
Creep Analysis
,
Wiley
, New York.
47.
Furtado
,
H. C.
,
De Almeida
,
L. H.
, and
Le May
,
I.
,
2008
, “
Damage and Remaining Life Estimation in High Temperature Plant With Variable Operating Conditions
,”
OMMI
,
5
(
1
), pp.
1
10
.
48.
Schütze
,
M.
,
2005
, “
Modelling Oxide Scale Fracture
,”
Mater. High Temp.
,
22
(
1–2
), pp.
147
154
.
49.
Sabau
,
A. S.
, and
Wright
,
I. G.
,
2009
, “
On the Estimation of Thermal Strains Developed During Oxide Growth
,”
J. Appl. Phys.
,
106
(
2
), p.
023503
.
50.
Grogan
,
D. M.
,
Leen
,
S. B.
, and
Ó Brádaigh
,
C. M.
,
2014
, “
An XFEM-Based Methodology for Fatigue Delamination and Permeability of Composites
,”
Compos. Struct.
,
107
, pp.
205
218
.
51.
Grogan
,
D. M.
,
Ó Brádaigh
,
C. M.
, and
Leen
,
S. B.
,
2015
, “
A Combined XFEM and Cohesive Zone Model for Composite Laminate Microcracking and Permeability
,”
Compos. Struct.
,
120
, pp.
246
261
.
You do not currently have access to this content.