The so-called “in-vessel retention (IVR)” is a basic strategy for severe accident (SA) mitigation of some advanced nuclear power plants (NPPs). The IVR strategy is to keep the reactor pressure vessel (RPV) intact under SA like core meltdown condition. During the IVR, the core melt (∼1327 °C) is collected in the lower head (LH) of the RPV, while the external surface of RPV is submerged in the water. Through external cooling of the RPV, the structural integrity is assumed to be maintained within a prescribed period of time. The maximum thermal loading is referred to critical heat flux (CHF) on the inside, while the external surface is considered to perform in the environment of the boiling crisis point (∼130 °C). Due to the high temperature gradients, the failure mechanisms of the RPV is found to span a wide range of structural behaviors across the wall thickness, such as melt-through, creep damage, plastic yielding as well as thermal expansion. Besides CHF, the pressurized core meltdown was another evident threat to the RPV integrity, as indicated in the Fukushima accident on 2011. In illustrating the effects of internal pressures and individual CHF on the failure behaviors, three typical RPVs with geometric discontinuity caused by local material melting were adopted for the comparative study. Through finite-element method (FEM), the RPV structural behaviors were investigated in terms of deformation, stress, plastic strain, creep, and damage. Finally, some important conclusions are summarized in the concluding remark. Such comparative study provides insight and better understanding for the RPV safety margin under the IVR condition.

References

1.
Willschütz
,
H.-G.
,
Altstadt
,
E.
,
Sehgal
,
B. R.
, and
Weiss
,
F.-P.
,
2006
, “
Recursively Coupled Thermal and Mechanical FEM-Analysis of Lower Plenum Creep Failure Experiments
,”
Ann. Nucl. Energy
,
33
(
2
), pp.
126
148
.
2.
Zhang
,
Y. P.
,
Qiu
,
S. Z.
,
Su
,
G. H.
, and
Tian
,
W. X.
,
2010
, “
Analysis of Safety Margin of In-Vessel Retention for AP1000
,”
Nucl. Eng. Des.
,
240
(
8
), pp.
2023
2033
.
3.
Theofanous
,
T. G.
,
Liu
,
C.
,
Additon
,
S.
,
Angelini
,
S.
,
Kymäläinen
,
O.
, and
Salmassi
,
T.
,
1996
, “
In-Vessel Coolability and Retention of a Core Melt
,” Vol. 1, Center for Risk Studies and Safety, Departments of Chemical and Mechanical Engineering, University of California, Santa Barbara, CA,
Report No. DOE/ID-10460
.
4.
Schulz
,
T. L.
,
2006
, “
Westinghouse AP1000 Advanced Passive Plant
,”
Nucl. Eng. Des.
,
236
(
14
), pp.
1547
1557
.
5.
Saito
,
T.
,
Yamashita
,
J.
,
Ishiwatari
,
Y.
, and
Oka
,
Y.
,
2010
,
Advances in Light Water Reactor Technologies
,
Springer Science & Business Media, LLC
,
New York
.
6.
Gaus-Liu
,
X.
,
Miassoedov
,
A.
,
Cron
,
T.
, and
Wenz
,
T.
,
2010
, “
In-Vessel Melt Pool Coolability Test-Description and Results of Live Experiments
,”
Nucl. Eng. Des.
,
240
(
11
), pp.
3898
3903
.
7.
Nguyen
,
T.
,
Jaitly
,
R.
,
Dinnie
,
K.
,
Henry
,
R.
,
Sinclair
,
D.
,
Wilson
,
D.
, and
O'Neill
,
M.
,
2008
, “
Development of Severe Accident Management Guidance (SAMG) for the Canadian CANDU 6 Nuclear Power Plants
,”
Nucl. Eng. Des.
,
238
(
4
), pp.
1093
1099
.
8.
Sehgal
,
B. R.
,
Theerthan
,
A.
,
Giri
,
A.
,
Karbojian
,
A.
,
Willschütz
,
H.-G.
,
Kymäläinen
,
O.
, and
Sairanen
,
R.
,
2003
, “
Assessment of Reactor Vessel Integrity (ARVI)
,”
Nucl. Eng. Des.
,
221
(
1
), pp.
23
53
.
9.
Theofanous
,
T. G.
,
Liu
,
C.
,
Additon
,
S.
,
Angelini
,
S.
,
Kymäläinen
,
O.
, and
Salmassi
,
T.
,
1997
, “
In-Vessel Coolability and Retention of a Core Melt
,”
Nucl. Eng. Des.
,
169
(
1
), pp.
1
48
.
10.
Jin
,
Y.
,
Xu
,
W.
,
Liu
,
X. J.
, and
Cheng
,
X.
,
2015
, “
In- and Ex-Vessel Coupled Analysis of IVR-ERVC Phenomenon for Large Scale PWR
,”
Ann. Nucl. Energy
,
80
, pp.
322
337
.
11.
Willschütz
,
H.-G.
,
Altstadt
,
E.
,
Sehgal
,
B. R.
, and
Weiss
,
F.-P.
,
2001
, “
Coupled Thermal Structural Analysis of LWR Vessel Creep Failure Experiments
,”
Nucl. Eng. Des.
,
208
(
3
), pp.
265
282
.
12.
Willschütz
,
H.-G.
,
Altstadt
,
E.
,
Sehgal
,
B. R.
, and
Weiss
,
F.-P.
,
2003
, “
Simulation of Creep Tests With French or German RPV-Steel and Investigation of a RPV-Support Against Failure
,”
Ann. Nucl. Energy
,
30
(
10
), pp.
1033
1063
.
13.
Atomic Energy Society of Japan
,
2009
, “
Implementation Standard on Probabilistic Safety Assessment Targeting Output Operation of Nuclear Power Plant (Level 2, PSA)
,” Atomic Energy Society of Japan Standard, Springer, Tokyo, Japan, Standard No. AESJ-SC-P009.
14.
Loktionov
,
V. D.
,
Mukhtarov
,
E. S.
,
Yaroshenko
,
N. I.
, and
Orlov
,
V. E.
,
1999
, “
Numerical Investigation of the Reactor Pressure Vessel Behaviour Under Severe Accident Conditions Taking Into Account the Combined Processes of the Vessel Creep and the Molten Pool Natural Convection
,”
Nucl. Eng. Des.
,
191
(
1
), pp.
31
52
.
15.
Zhang
,
Y. P.
,
Janne
,
W.
, and
Zhang
,
Y. Y.
,
2014
, “
Upper Limits to Americium Concentration in Large Sized Sodium-Cooled Fast Reactors Loaded With Metallic Fuel
,”
Ann. Nucl. Energy
,
70
, pp.
180
187
.
16.
Government of Japan, Nuclear Emergency Response Headquarters
,
2011
, “
Report of the Japanese Government to the IAEA, Ministerial Conference on Nuclear Safety-The Accident at TEPCO's Fukushima Nuclear Power Stations
,” Vienna, Austria,
Report No. 2011-6-20
.
17.
Mao
,
J. F.
,
Zhu
,
J. W.
,
Bao
,
S. Y.
,
Luo
,
L. J.
, and
Gao
,
Z. L.
,
2015
, “
Creep and Damage Analysis of Reactor Pressure Vessel Considering Core Meltdown Scenario
,”
Procedia Eng.
,
130
, pp.
1148
1161
.
18.
Devos
,
J.
,
Catherine
,
C. S.
,
Poette
,
C.
, and
Burlet
,
H.
,
1999
, “
CEA Programme to Model the Failure of the Lower Head in Severe Accidents
,”
Nucl. Eng. Des.
,
191
(
1
), pp.
3
15
.
19.
Koundy
,
V.
, and
Hoang
,
N. H.
,
2008
, “
Modelling of PWR Lower Head Failure Under Severe Accident Loading Using Improved Shells of Revolution Theory
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2400
2410
.
20.
Koundy
,
V.
,
Caroli
,
C.
, and
Nicolas
,
L.
,
2008
, “
Study of Tearing Behaviour of a PWR Reactor Pressure Vessel Lower Head Under Severe Accident Loadings
,”
Nucl. Eng. Des.
,
238
(
9
), pp.
2411
2419
.
21.
Adroguer
,
B.
,
Chatelard
,
P.
,
Van Dorsselaere
,
J. P.
,
Duriez
,
C.
,
Cocuaud
,
N.
,
Bellenfant
,
L.
, and
Homann
,
C.
,
2003
, “
Core Loss During a Severe Accident (COLOSS)
,”
Nucl. Eng. Des.
,
221
(
1
), pp.
55
76
.
22.
Buck
,
M.
,
Burger
,
M.
,
Godin-Jacqmin
,
L.
,
Tran
,
C. T.
, and
Chudanov
,
V.
,
2010
, “
The LIVE Program-Results of Test L1 and Joint Analyses on Transient Molten Pool Thermal Hydraulics
,”
Prog. Nucl. Energy
,
52
(
1
), pp.
46
60
.
23.
Bergheau
,
J.-M.
,
Devaux
,
J.
,
Mottet
,
G. R.
, and
Gilles
,
P.
,
2004
, “
Prediction of Creep Rupture of Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
126
(
2
), pp.
163
168
.
24.
Beukelmann
,
D.
,
Guo
,
W.
,
Holzer
,
W.
,
Kauer
,
R.
,
Münch
,
W.
,
Reichel
,
C.
, and
Schöner
,
P.
,
2012
, “
Safety Assessment of Reactor Pressure Vessel Integrity for Loss of Coolant Accident Conditions
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011302
.
25.
Koundy
,
V.
,
Durin
,
M.
,
Nicolas
,
L.
, and
Combescure
,
A.
,
2005
, “
Simplified Modeling of a PWR Reactor Pressure Vessel Lower Head Failure in the Case of a Severe Accident
,”
Nucl. Eng. Des.
,
235
(
8
), pp.
835
843
.
26.
U.S. NRC
,
2011
, “
Final Safety Evaluation Report Related to Certification of the AP1000 Standard Plant Design Docket No. 52-006
,” Supplement 2, U.S. Nuclear Regulatory Commission, Washington, DC,
Report No. NUREG-1793
.
You do not currently have access to this content.