Autofrettage is a metal forming technique widely incorporated for strengthening the thick-walled cylindrical and spherical pressure vessels. The technique is based on the principle of initially subjecting the cylindrical or spherical vessel to partial plastic deformation and then unloading it; as a result of which compressive residual stresses are set up. On the basis of the type of the forming load, autofrettage can be classified into hydraulic, swage, explosive, thermal, and rotational. Considerable research studies have been carried out on autofrettage with a variety of theoretical models and experimental methods. This paper presents an extensive review of various types of autofrettage processes. A wide range of theoretical models and experimental studies are described. Optimization of an autofrettage process is also discussed. Based on the review, some challenging issues and key areas for future research are identified.

References

1.
Jacob
,
L.
,
1907
, “
La Résistance et L’équilibre Élastique Des Tubes Frettés
,”
Meml. L’artillerie Nav.
,
1
(
1907
), pp.
43
155
.
2.
Hu
,
C.
,
Yang
,
F.
,
Zhao
,
Z.
, and
Zeng
,
F.
,
2017
, “
An Alternative Design Method for the Double-Layer Combined Die Using Autofrettage Theory
,”
Mech. Sci.
,
8
(
2
), pp.
267
276
.
3.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.
4.
Mote
,
J. D.
,
Ching
,
L. K.
,
Knight
,
R. E.
,
Fay
,
R. J.
, and
Kaplan
,
M. A.
,
1971
, “
Explosive Autofrettage of Cannon Barrels
,” Army Materials and Research Center, Watertown, MA, Report No.
AMMRC CR 70-25
.
5.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.
6.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.
7.
Crossland
,
B.
, and
Bones
,
J. A.
,
1958
, “
Behaviour of Thick-Walled Steel Cylinders Subjected to Internal Pressure
,”
Proc. Inst. Mech. Eng.
,
172
(
1
), pp.
777
804
.
8.
Malik
,
M. A.
,
Khushnood
,
S.
,
Khan
,
M.
,
Rashid
,
B.
, and
Khan
,
M.
,
2008
, “Hydraulic Autofrettage Technology: A Review,” 16th International Conference on Nuclear Engineering,
Orlando, FL
, May 11–15, pp.
195
206
.
9.
Malik
,
M. A.
, and
Khushnood
,
S.
,
2003
, “A Review of Swage---Autofrettage Process,”
11th International Conference on Nuclear Engineering
,
Tokyo, Japan
, Apr. 20–23, pp.
1
12
.
10.
Avitzur
,
B.
,
1994
, “
Autofrettage—Stress Distribution Under Load and Retained Stresses After Depressurization
,”
Int. J. Pressure Vessels Piping
,
57
(
3
), pp.
271
287
.
11.
Chen
,
P. C. T.
,
1973
, “
A Comparison of Flow and Deformation Theories in a Radially Stressed Annular Plate
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
283
287
.
12.
Lu
,
W. Y.
, and
Hsu
,
Y. C.
,
1977
, “
Elastic-Plastic Analysis of a Flat Ring Subject to Internal Pressure
,”
Acta Mech.
,
27
(
1–4
), pp.
155
172
.
13.
Perry
,
J.
, and
Aboudi
,
J.
,
2003
, “
Elasto-Plastic Stresses in Thick Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
248
252
.
14.
Rees
,
D. W. A.
,
1990
, “
Autofrettage Theory and Fatigue Life of Open-Ended Cylinders
,”
J. Strain Anal.
,
25
(
2
), pp.
109
121
.
15.
Li
,
G.
,
Zeng
,
X.
,
Li
,
J.
, and
Huang
,
L.
,
1988
, “
Elastoplastic Analysis of an Open-Ended Cylinder From the Twelve Polygonal Yield Condition
,”
Int. J. Pressure Vessels Piping
,
33
(
2
), pp.
143
152
.
16.
Zeng
,
X.
,
Li
,
J.
,
Li
,
J.
,
Li
,
G.
,
Yang
,
Z.
, and
Li
,
J.
,
1993
, “
The Application of the Twelve-Angled Polygonal Yield Criterion to Pressure Vessel Problems
,”
Int. J. Pressure Vessels Piping
,
55
(
3
), pp.
385
393
.
17.
Parker
,
A. P.
,
2000
, “
Autofrettage of Open-End Tubes—Pressures, Stresses, Strains, and Code Comparisons
,”
ASME J. Pressure Vessel Technol.
,
123
(
3
), pp.
271
281
.
18.
Thomas
,
D. G. B.
,
1953
, “
The Autofrettage of Thick Tubes With Free Ends
,”
J. Mech. Phys. Solids
,
1
(
2
), pp.
124
133
.
19.
Gao
,
X.
,
1992
, “
An Exact Elasto-Plastic Solution for an Open-Ended Thick-Walled Cylinder of a Strain-Hardening Material
,”
Int. J. Pressure Vessels Piping
,
52
(
1
), pp.
129
144
.
20.
Chen
,
P.
,
1980
, “
Generalized Plane-Strain Problems in an Elastic-Plastic Thick-Walled Cylinder
,” Army Armament Research and Development Center, Watervliet, NY, Report No.
ARLCB-TR-80028
.
21.
MacGregor
,
C. W.
,
Coffin
,
L. F.
, Jr.
, and
Fisher
,
J. C.
,
1948
, “
Partially Plastic Thick-Walled Tubes
,”
J. Franklin Inst.
,
245
(
2
), pp.
135
158
.
22.
Allen
,
D. N.
,
de
,
G.
, and
Sopwith
,
D. G.
,
1951
, “
The Stresses and Strains in a Partly Plastic Thick Tube Under Internal Pressure and End-Load
,”
Proc. R. Soc. London A
,
205
(
1080
), pp.
69
83
.
23.
Koiter
,
W.
,
1953
, “
On Partially Plastic Thick-Walled Tubes
,”
Biezeno Anniversary Volume
, N. V. de Technische Uitpeverij, Haarlem, Holland, pp.
232
251
.
24.
Mendelson
,
A.
,
1968
,
Plasticity, Theory and Application
,
Macmillan
,
New York
.
25.
Chen
,
P. C. T.
,
1986
, “
The Bauschinger and Hardening Effect on Residual Stresses in an Autofrettaged Thick-Walled Cylinder
,”
ASME J. Pressure Vessel Technol.
,
108
(
1
), pp.
108
112
.
26.
Bland
,
D. R.
,
1956
, “
Elastoplastic Thick-Walled Tubes of Work-Hardening Material Subject to Internal and External Pressures and to Temperature Gradients
,”
J. Mech. Phys. Solids
,
4
(
4
), pp.
209
229
.
27.
Davidson
,
T.
,
Barton
,
C.
,
Reiner
,
A.
, and
Kendall
,
D.
,
1961
, “
Overstrain of High-Strength, Open End Cylinders of Intermediate Diameter Ratio
,”
First International Congress on Experimental Mechanics
,
New York
, Nov. 1–3, pp.
335
352
.
28.
Chu
,
S.-C.
,
1972
, “
A More Rational Approach to the Problem of an Elastoplastic Thick-Walled Cylinder
,”
J. Franklin Inst.
,
294
(
1
), pp.
57
65
.
29.
Elder
,
A. S.
,
Tomkins
,
R.
, and
Mann
,
T. L.
,
1975
, “
Generalized Plane Strain in an Elastic, Perfectly Plastic Cylinder, With Reference to the Hydraulic Autofrettage Process
,”
21st Conference of Army Mathematicians, White Sands Missile Range, NM
, May 14–15, pp.
623
659
.
30.
Marcal
,
P. V.
,
1965
, “
A Note on the Elastic-Plastic Thick Cylinder With Internal Pressure in the Open and Closed-End Condition
,”
Int. J. Mech. Sci.
,
7
(
12
), pp.
841
845
.
31.
Gao
,
X.-L.
,
1993
, “
An Exact Elasto-Plastic Solution for a Closed-End Thick-Walled Cylinder of Elastic Linear-Hardening Material With Large Strains
,”
Int. J. Pressure Vessels Piping
,
56
(
3
), pp.
331
350
.
32.
Livieri
,
P.
, and
Lazzarin
,
P.
,
2001
, “
Autofrettaged Cylindrical Vessels and Bauschinger Effect: An Analytical Frame for Evaluating Residual Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
124
(
1
), pp.
38
46
.
33.
Lazzarin
,
P.
, and
Livieri
,
P.
,
1997
, “
Different Solutions for Stress and Strain Fields in Autofrettaged Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
231
238
.
34.
Loghman
,
A.
, and
Wahab
,
M. A.
,
1994
, “
Loading and Unloading of Thick-Walled Cylindrical Pressure Vessels of Strain-Hardening Material
,”
ASME J. Pressure Vessel Technol.
,
116
(
2
), pp.
105
109
.
35.
Perl
,
M.
, and
Perry
,
J.
,
2005
, “
An Experimental-Numerical Determination of the Three-Dimensional Autofrettage Residual Stress Field Incorporating Bauschinger Effects
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
173
178
.
36.
Marcal
,
P. V.
,
1965
, “
A Stiffness Method for Elastic-Plastic Problems
,”
Int. J. Mech. Sci.
,
7
(
4
), pp.
229
238
.
37.
Alexandrov
,
S.
,
Jeong
,
W.
, and
Chung
,
K.
,
2015
, “
Descriptions of Reversed Yielding in Internally Pressurized Tubes
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011204
.
38.
Hill
,
R.
,
Lee
,
E. H.
, and
Tupper
,
S. J.
,
1947
, “
The Theory of Combined Plastic and Elastic Deformation With Particular Reference to a Thick Tube Under Internal Pressure
,”
Proc. R. Soc. London A
,
191
(
1026
), pp.
278
303
.
39.
Wang
,
G. S.
,
1988
, “
An Elastic-Plastic Solution for a Normally Loaded Center Hole in a Finite Circular Body
,”
Int. J. Pressure Vessels Piping
,
33
(
4
), pp.
269
284
.
40.
Nádai
,
A.
,
1950
,
Theory of Flow and Fracture of Solids
, Vol.
1
,
McGraw-Hill
,
New York
.
41.
Huang
,
X. P.
,
2005
, “
A General Autofrettage Model of a Thick-Walled Cylinder Based on Tensile-Compressive Stress-Strain Curve of a Material
,”
J. Strain Anal.
,
40
(
6
), pp.
599
607
.
42.
Huang
,
X. P.
, and
Cui
,
W.
,
2004
, “
Autofrettage Analysis of Thick-Walled Cylinder Based on Tensile-Compressive Curve of Material
,”
Key Eng. Mater.
,
274–276
, pp.
1035
1040
.
43.
Huang
,
X. P.
, and
Cui
,
W. C.
,
2005
, “
Effect of Bauschinger Effect and Yield Criterion on Residual Stress Distribution of Autofrettaged Tube
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
212
216
.
44.
Huang
,
X.
, and
Moan
,
T.
,
2009
, “
Residual Stress in an Autofrettaged Tube Taking Bauschinger Effect as a Function of the Prior Plastic Strain
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021207
.
45.
Hosseinian
,
E.
,
Farrahi
,
G. H.
, and
Movahhedy
,
M. R.
,
2009
, “
An Analytical Framework for the Solution of Autofrettaged Tubes Under Constant Axial Strain Condition
,”
ASME J. Pressure Vessel Technol.
,
131
(
6
), p.
061201
.
46.
Gao
,
X.-L.
,
2003
, “
Elasto-Plastic Analysis of an Internally Pressurized Thick-Walled Cylinder Using a Strain Gradient Plasticity Theory
,”
Int. J. Solids Struct.
,
40
(
23
), pp.
6445
6455
.
47.
Gao
,
X.-L.
,
2007
, “
Strain Gradient Plasticity Solution for an Internally Pressurized Thick-Walled Cylinder of an Elastic Linear-Hardening Material
,”
Z. Angew. Math. Phys.
,
58
(
1
), pp.
161
173
.
48.
Gao
,
X.-L.
,
Wen
,
J.-F.
,
Xuan
,
F.-Z.
, and
Tu
,
S.-T.
,
2015
, “
Autofrettage and Shakedown Analyses of an Internally Pressurized Thick-Walled Cylinder Based on Strain Gradient Plasticity Solutions
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041010
.
49.
Durban
,
D.
, and
Kubi
,
M.
,
1992
, “
A General Solution for the Pressurized Elastoplastic Tube
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
20
26
.
50.
Gibson
,
M. C.
,
Hameed
,
A.
,
Parker
,
A. P.
, and
Hetherington
,
J. G.
,
2005
, “
A Comparison of Methods for Predicting Residual Stresses in Strain-Hardening, Autofrettaged Thick Cylinders, Including the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
128
(
2
), pp.
217
222
.
51.
Dixit
,
P. M.
, and
Dixit
,
U. S.
,
2014
,
Plasticity: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
52.
Milligan
,
R. V.
,
Koo
,
W. H.
, and
Davidson
,
T. E.
,
1966
, “
The Bauschinger Effect in a High-Strength Steel
,”
J. Basic Eng.
,
88
(
2
), pp.
480
488
.
53.
Bastun
,
V.
, and
Podil’chuk
,
I.
,
2017
, “
Bauschinger Effect Prediction in Thick-Walled Autofrettaged Cylindrical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041404
.
54.
Prager
,
W.
,
1955
, “
The Theory of Plasticity: A Survey of Recent Achievements
,”
Proc. Inst. Mech. Eng.
,
169
(
1
), pp.
41
57
.
55.
Ziegler
,
H.
,
1959
, “
A Modification of Prager’s Hardening Rule
,”
Q. Appl. Math.
,
17
(
1
), pp.
55
65
.
56.
Franklin
,
G. J.
, and
Morrison
,
J. L. M.
,
1960
, “
Autofrettage of Cylinders: Prediction of Pressure/External Expansion Curves and Calculation of Residual Stresses
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
947
974
.
57.
Kamal
,
S. M.
,
2016
, “
Theoretical and Experimental Study of Thermal Autofrettage Process
,”
Ph.D. thesis
, IIT Guwahati, Guwahati, India.
58.
Jahed
,
H.
,
Sethuraman
,
R.
, and
Dubey
,
R. N.
,
1997
, “
A Variable Material Property Approach for Solving Elastic-Plastic Problems
,”
Int. J. Pressure Vessels Piping
,
71
(
3
), pp.
285
291
.
59.
Jahed
,
H.
, and
Dubey
,
R. N.
,
1997
, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
(
3
), pp.
264
273
.
60.
Sedighi
,
M.
, and
Jabbari
,
A. H.
,
2013
, “
Investigation of Residual Stresses in Thick-Walled Vessels With Combination of Autofrettage and Wire-Winding
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
295
301
.
61.
Song
,
J.
,
Tang
,
C. Y.
,
Xu
,
B. Y.
, and
Lee
,
W. B.
,
1994
, “
Strain Rate Effects on Medium Carbon Steel and Its Effects on Autofrettage
,”
Scr. Metall. Mater.
,
30
(
2
), pp.
139
144
.
62.
Marcal
,
P. V.
, and
King
,
I. P.
,
1967
, “
Elastic-Plastic Analysis of Two-Dimensional Stress Systems by the Finite Element Method
,”
Int. J. Mech. Sci.
,
9
(
3
), pp.
143
155
.
63.
Chen
,
P.
, and
O’Hara
,
G.
,
1983
, “
Finite Element Results of Pressurized Thick Tubes Based on Two Elastic-Plastic Material Models
,” Army Armament Research Development and Engineering Center, Benet Weapons Lab, New York, Report No. ARLCB-TR-83047
64.
Alegre
,
J. M.
,
Bravo
,
P.
, and
Preciado
,
M.
,
2006
, “
Design of an Autofrettaged High-Pressure Vessel, Considering the Bauschinger Effect
,”
Proc. Inst. Mech. Eng.
,
220
(
1
), pp.
7
16
.
65.
Gibson
,
M. C.
,
Parker
,
A. P.
,
Hameed
,
A.
, and
Hetherington
,
J. G.
,
2012
, “
Implementing Realistic, Nonlinear, Material Stress–Strain Behavior in ANSYS for the Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051202
.
66.
Feng
,
H.
,
Mughrabi
,
H.
, and
Donth
,
B.
,
1998
, “
Finite-Element Modelling of Low-Temperature Autofrettage of Thick-Walled Tubes of the Austenitic Stainless Steel AISI 304 L—Part I: Smooth Thick-Walled Tubes
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
1
), p.
51
.
67.
Feng
,
H.
,
Donth
,
B.
, and
Mughrabi
,
H.
,
1998
, “
Finite-Element Modelling of Low-Temperature Autofrettage of Thick-Walled Tubes of the Austenitic Stainless Steel AISI 304 L—Part II: Thick-Walled Tube With Cross-Bore
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
1
), p.
71
.
68.
Ayob
,
A.
,
Tamin
,
M.
, and
Elbasheer
,
M. K.
,
2009
, “
Pressure Limits of Thick-Walled Cylinders
,” International Multi Conference of Engineers and Computer Scientists (
IMECS
), Hong Kong, China, Mar. 18–20, pp.
1
4
.
69.
Farrahi
,
G. H.
,
Voyiadjis
,
G. Z.
,
Hoseini
,
S. H.
, and
Hosseinian
,
E.
,
2013
, “
Residual Stress Analysis of the Autofrettaged Thick-Walled Tube Using Nonlinear Kinematic Hardening
,”
ASME J. Pressure Vessel Technol.
,
135
(
2
), p.
021204
.
70.
Hojjati
,
M. H.
, and
Hassani
,
A.
,
2007
, “
Theoretical and Finite-Element Modeling of Autofrettage Process in Strain-Hardening Thick-Walled Cylinders
,”
Int. J. Pressure Vessels Piping
,
84
(
5
), pp.
310
319
.
71.
Wahi
,
N.
,
Ayob
,
A.
, and
Elbasheer
,
M. K.
,
2011
, “
Effect of Optimum Autofrettage on Pressure Limits of Thick-Walled Cylinder
,”
Int. J. Environ. Sci. Develop.
,
2
(
4
), pp.
329
333
.
72.
Trojnacki
,
A.
, and
Krasiński
,
M.
,
2014
, “
Numerical Verification of Analytical Solution for Autofrettaged High-Pressure Vessels
,”
J. Theor. Appl. Mech.
,
52
(
3
), pp.
731
744
.
73.
Tuba
,
I. S.
,
1965
, “
Elastic Plastic Analysis for Hollow Spherical Media Under Uniform Radial Loading
,”
J. Franklin Inst.
,
280
(
4
), pp.
343
355
.
74.
Gao
,
X.-L.
,
1994
, “
An Exact Elasto-Plastic Solution for a Thick-Walled Spherical Shell of Elastic Linear-Hardening Material With Finite Deformations
,”
Int. J. Pressure Vessels Piping
,
57
(
1
), pp.
45
56
.
75.
Gao
,
X.-L.
,
2003
, “
Strain Gradient Plasticity Solution for an Internally Pressurized Thick-Walled Spherical Shell of an Elastic–Plastic Material
,”
Mech. Res. Commun.
,
30
(
5
), pp.
411
420
.
76.
Wen
,
J.-F.
,
Gao
,
X.-L.
,
Xuan
,
F.-Z.
, and
Tu
,
S.-T.
,
2017
, “
Autofrettage and Shakedown Analyses of an Internally Pressurized Thick-Walled Spherical Shell Based on Two Strain Gradient Plasticity Solutions
,”
Acta Mech.
,
228
(
1
), pp.
89
105
.
77.
Chadwick
,
P.
,
1963
, “
Compression of a Spherical Shell of Work-Hardening Material
,”
Int. J. Mech. Sci.
,
5
(
2
), pp.
165
182
.
78.
Adibi-Asl
,
R.
, and
Livieri
,
P.
,
2006
, “
Analytical Approach in Autofrettaged Spherical Pressure Vessels Considering the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
129
(
3
), pp.
411
419
.
79.
Partom
,
Y.
,
1970
, “
Large Elastoplastic Deformation of a Thick-Walled Spherical Shell
,”
Int. J. Non-Linear Mech.
,
5
(
3
), pp.
475
490
.
80.
Hrudey
,
T. M.
, and
Haddow
,
J. B.
,
1973
, “
Elastic-Plastic Expansion of a Thick Spherical Shell With Finite Elastic Strain
,”
Acta Mech.
,
18
(
1–2
), pp.
21
34
.
81.
Carroll
,
M. M.
,
1985
, “
Radial Expansion of Hollow Spheres of Elastic-Plastic Hardening Material
,”
Int. J. Solids Struct.
,
21
(
7
), pp.
645
670
.
82.
Gamer
,
U.
,
1988
, “
The Expansion of the Elastic-Plastic Spherical Shell With Nonlinear Hardening
,”
Int. J. Mech. Sci.
,
30
(
6
), pp.
415
426
.
83.
Parker
,
A. P.
, and
Huang
,
X.
,
2006
, “
Autofrettage and Reautofrettage of a Spherical Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
129
(
1
), pp.
83
88
.
84.
Parker
,
A. P.
, and
Huang
,
X.
,
2007
, “
Autofrettage of a Spherical Pressure Vessel
,”
ASME
Paper No. PVP2007-26343.
85.
Maleki
,
M.
,
Farrahi
,
G. H.
,
Jahromi
,
B. H.
, and
Hosseinian
,
E.
,
2010
, “
Residual Stress Analysis of Autofrettaged Thick-Walled Spherical Pressure Vessel
,”
Int. J. Pressure Vessels Piping
,
87
(
7
), pp.
396
401
.
86.
Durban
,
D.
, and
Baruch
,
M.
,
1974
, “
Behaviour of an Incrementally Elastic Thick Walled Sphere Under Internal and External Pressure
,”
Int. J. Non-Linear Mech.
,
9
(
2
), pp.
105
119
.
87.
Durban
,
D.
, and
Baruch
,
M.
,
1977
, “
Analysis of an Elasto-Plastic Thick Walled Sphere Loaded by Internal and External Pressure
,”
Int. J. Non-Linear Mech.
,
12
(
1
), pp.
9
22
.
88.
Rupali
, and
Mondal
,
S.
,
2015
, “
Finite Element Analysis for Predicting Residual Stresses of Autofrettaged Spherical Vessels Considering Bauschinger Effect
,”
Int. J. Sci. Eng. Res.
,
6
(
8
), pp.
912
919
.
89.
Hencky
,
H.
,
1924
, “
Zur Theorie Plastischer Deformationen Und Der Hierdurch Im Material Hervorgerufenen Nachspannungen
,”
Z. Angew. Math. Mech.
,
4
(
4
), pp.
323
334
.
90.
Hill
,
R.
,
1998
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
Oxford, UK
.
91.
Jones
,
R. M.
,
2009
,
Deformation Theory of Plasticity
,
Bull Ridge Publishing
,
Blacksburg, VA
.
92.
Rees
,
D. W. A.
,
1987
, “
A Theory of Autofrettage With Applications to Creep and Fatigue
,”
Int. J. Pressure Vessels Piping
,
30
(
1
), pp.
57
76
.
93.
Niitsu
,
Y.
, and
Ikegami
,
K.
,
1990
, “
Effect of Temperature Variation on Cyclic Elastic-Plastic Behavior of SUS 304 Stainless Steel
,”
ASME J. Pressure Vessel Technol.
,
112
(
2
), pp.
152
157
.
94.
Jahromi
,
B. H.
,
Farrahi
,
G. H.
,
Maleki
,
M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2009
, “
Residual Stresses in Autofrettaged Vessel Made of Functionally Graded Material
,”
Eng. Struct.
,
31
(
12
), pp.
2930
2935
.
95.
Parker
,
A. P.
, and
Farrow
,
J. R.
,
1980
, “
Technical Note: On the Equivalence of Axisymmetric Bending, Thermal, and Autofrettage Residual Stress Fields
,”
J. Strain Anal.
,
15
(
1
), pp.
51
52
.
96.
Parker
,
A.
,
Underwood
,
J.
,
Throop
,
J.
, and
Andrasic
,
C.
,
1983
, “
Stress Intensity and Fatigue Crack Growth in a Pressurized, Autofrettaged Thick Cylinder
,”
Fracture Mechanics: Fourteenth Symposium
(Theory and Analysis, Vol.
I
),
J.
Lewis
, and
G.
Sines
, eds.,
ASTM International
,
West Conshohocken, PA
, pp.
I-216
I-237
.
97.
Faupel
,
J. H.
,
1955
, “
Residual Stresses in Heavy-Wall Cylinders
,”
J. Franklin Inst.
,
259
(
5
), pp.
405
419
.
98.
Perl
,
M.
,
1998
, “
An Improved Split-Ring Method for Measuring the Level of Autofrettage in Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
120
(
1
), pp.
69
73
.
99.
Perl
,
M.
, and
Aroné
,
R.
,
1994
, “
An Axisymmetric Stress Release Method for Measuring the Autofrettage Level in Thick-Walled Cylinders—Part I: Basic Concept and Numerical Simulation
,”
ASME J. Pressure Vessel Technol.
,
116
(
4
), pp.
384
388
.
100.
Prime
,
M. B.
,
1999
, “
Residual Stress Measurement by Successive Extension of a Slot: The Crack Compliance Method
,”
ASME Appl. Mech. Rev.
,
52
(
2
), pp.
75
96
.
101.
Perl
,
M.
, and
Aroné
,
R.
,
1994
, “
An Axisymmetric Stress Release Method for Measuring the Autofrettage Level in Thick-Walled Cylinders—Part II: Experimental Validation
,”
ASME J. Pressure Vessel Technol.
,
116
(
4
), pp.
389
395
.
102.
Stacey
,
A.
, and
Webster
,
G. A.
,
1988
, “
Determination of Residual Stress Distributions in Autofrettaged Tubing
,”
Int. J. Pressure Vessels Piping
,
31
(
3
), pp.
205
220
.
103.
Jahed
,
H.
,
Faritus
,
M. R.
, and
Jahed
,
Z.
,
2012
, “
Residual Stress Measurements in an Autofrettage Tube Using Hole Drilling Method
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051501
.
104.
George
,
D.
, and
Smith
,
D.
,
2000
, “
The Application of the Deep Hole Technique for Measuring Residual Stresses in an Autofrettaged Tube
,”
ASME
Pressure Vessels and Piping
,
Seattle, WA
, July 23–27, pp. 25–32.
105.
Sachs
,
G.
,
1927
, “
Evidence of Residual Stresses in Rods and Tubes
,”
Feitschriff Metallkd.
,
19
, pp.
352
357
.
106.
Cheng
,
W.
, and
Finnie
,
I.
,
1985
, “
A Method for Measurement of Axisymmetric Axial Residual Stresses in Circumferentially Welded Thin-Walled Cylinders
,”
ASME J. Eng. Mater. Technol.
,
107
(
3
), pp.
181
185
.
107.
James
,
M.
, and
Cohen
,
J.
,
1978
, “
The Measurement of Residual Stress by X-Ray Diffraction Techniques
,”
Treatise Mater. Sci. Technol.
, 19(Pt. A), pp.
1
62
.
108.
Bacon
,
G. E.
,
1975
,
Neutron Diffraction
, 3rd ed.,
Clarendon Press
,
Oxford, UK
.
109.
Stacey
,
A.
,
MacGillivary
,
H. J.
,
Webster
,
G. A.
,
Webster
,
P. J.
, and
Ziebeck
,
K. R. A.
,
1985
, “
Measurement of Residual Stresses by Neutron Diffraction
,”
J. Strain Anal.
,
20
(
2
), pp.
93
100
.
110.
Parker
,
A. P.
,
Underwood
,
J. H.
, and
Kendall
,
D. P.
,
1999
, “
Bauschinger Effect Design Procedures for Autofrettaged Tubes Including Material Removal and Sachs’ Method
,”
ASME J. Pressure Vessel Technol.
,
121
(
4
), pp.
430
437
.
111.
Parker
,
A. P.
,
2004
, “
A Critical Examination of Sachs’ Material-Removal Method for Determination of Residual Stress
,”
ASME J. Pressure Vessel Technol.
,
126
(
2
), pp.
234
236
.
112.
Cheng
,
W.
, and
Finnie
,
I.
,
1986
, “
Measurement of Residual Hoop Stresses in Cylinders Using the Compliance Method
,”
ASME J. Eng. Mater. Technol.
,
108
(
2
), pp.
87
92
.
113.
Venter
,
A. M.
,
de Swardt
,
R. R.
, and
Kyriacou
,
S.
,
2000
, “
Comparative Measurements on Autofrettaged Cylinders With Large Bauschinger Reverse Yielding Zones
,”
J. Strain Anal.
,
35
(
6
), pp.
459
469
.
114.
Zerari
,
N.
,
Saidouni
,
T.
, and
Benretem
,
A.
,
2013
, “
Determination of Residuals Stresses Induced by the Autofrettage Treatment by the X-Rays Diffraction Method
,”
Mod. Mech. Eng.
,
3
(
3
), pp.
121
126
.
115.
Çandar
,
H.
, and
Filiz
,
İ. H.
,
2017
, “
Experimental Study on Residual Stresses in Autofrettaged Thick-Walled High Pressure Cylinders
,”
High Pressure Res.
,
37
(
4
), pp.
516
528
.
116.
Underwood
,
J. H.
,
DeSwardt
,
R. R.
,
Venter
,
A. M.
,
Troiano
,
E.
,
Hyland
,
E. J.
, and
Parker
,
A. P.
,
2007
, “
Hill Stress Calculations for Autofrettaged Tubes Compared With Neutron Diffraction Residual Stresses and Measured Yield Pressure and Fatigue Life
,”
ASME
Paper No. PVP2007-26617.
117.
Ma
,
Y.
,
Zhang
,
S. Y.
,
Goodway
,
C.
,
Done
,
R.
,
Evans
,
B.
,
Kirichek
,
O.
, and
Bowden
,
Z.
,
2012
, “
A Non-Destructive Experimental Investigation of Elastic Plastic Interfaces of Autofrettaged Thick-Walled Cylindrical Aluminium High Pressure Vessels
,”
High Pressure Res.
,
32
(
3
), pp.
364
375
.
118.
Langer
,
B. F.
,
1971
, “
Design-Stress Basis for Pressure Vessels
,”
Exp. Mech.
,
11
(
1
), pp.
1
11
.
119.
Majzoobi
,
G. H.
,
Farrahi
,
G. H.
, and
Mahmoudi
,
A. H.
,
2003
, “
A Finite Element Simulation and an Experimental Study of Autofrettage for Strain Hardened Thick-Walled Cylinders
,”
Mater. Sci. Eng., A
,
359
(
1–2
), pp.
326
331
.
120.
Seifi
,
R.
, and
Babalhavaeji
,
M.
,
2012
, “
Bursting Pressure of Autofrettaged Cylinders With Inclined External Cracks
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
112
119
.
121.
Chen
,
P. C.
,
1988
, “
A Simple Analysis of the Swage Autofrettage Process
,” Army Armament Research Development and Engineering Center, Benet Weapons Lab, New York, Paper No.
ARCCB-TR-88037
.
122.
Rees
,
D. W. A.
,
2011
, “
A Theory for Swaging of Discs and Lugs
,”
Meccanica
,
46
(
6
), pp.
1213
1237
.
123.
Parker
,
A. P.
,
O’Hara
,
G. P.
, and
Underwood
,
J. H.
,
2003
, “
Hydraulic Versus Swage Autofrettage and Implications of the Bauschinger Effect
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
309
314
.
124.
Perry
,
J.
, and
Perl
,
M.
,
2008
, “
A 3-D Model for Evaluating the Residual Stress Field Due to Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
130
(
4
), p.
041211
.
125.
Iremonger
,
M. J.
, and
Kalsi
,
G. S.
,
2003
, “
A Numerical Study of Swage Autofrettage
,”
ASME J. Pressure Vessel Technol.
,
125
(
3
), pp.
347
351
.
126.
Till
,
E. T.
, and
Rammerstorfer
,
F. G.
,
1983
, “
Nonlinear Finite Element Analysis of an Autofrettage Process
,”
Comput. Struct.
,
17
(
5–6
), pp.
857
864
.
127.
Bihamta
,
R.
,
Movahhedy
,
M. R.
, and
Mashreghi
,
A. R.
,
2007
, “
A Numerical Study of Swage Autofrettage of Thick-Walled Tubes
,”
Mater. Des.
,
28
(
3
), pp.
804
815
.
128.
Gibson
,
M. C.
,
Hameed
,
A.
, and
Hetherington
,
J. G.
,
2012
, “
Investigation of Driving Force Variation During Swage Autofrettage, Using Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051203
.
129.
Gibson
,
M. C.
,
Hameed
,
A.
, and
Hetherington
,
J. G.
,
2014
, “
Investigation of Residual Stress Development During Swage Autofrettage, Using Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
,
136
(
2
), p.
021206
.
130.
O’Hara
,
G. P.
,
1992
, “
Analysis of the Swage Autofrettage Process
,” Army Armament Research Development and Engineering Center, Benet Weapons Lab, New York, Technical Report No.
ARCCB-TR-92016
.
131.
Chen
,
P. C.
,
1988
, “
Finite Element Analysis of the Swage Autofrettage Process
,” Army Armament Research Development and Engineering Center, Benet Weapons Lab, New York, Report No.
ARCCB-TR-88037
.
132.
Barbachano
,
H.
,
Alegre
,
J.
, and
Cuesta
,
I.
, 2011, “
FEM Simulation of the Swage Tube Forming (STF) in Cylinders Subjected to Internal Pressure
,”
An. Mec. Fractura
,
28
(
2
), pp.
481
486
.
133.
Hua
,
Z.
, and
Penumarthy
,
C.
,
2014
, “
Computer Modeling and Optimization of Swage Autofrettage Process of a Thick-Walled Cylinder Incorporating Bauschinger Effect
,”
Am. Trans. Eng. Appl. Sci.
,
3
(1), pp.
31
63
.
134.
Chang
,
L.
,
Pan
,
Y.
, and
Ma
,
X.
,
2013
, “
Residual Stress Calculation of Swage Autofrettage Gun Barrel
,”
Int. J. Comput. Sci. Issues
,
10
(
2
), pp.
52
59
.
135.
Chaboche
,
J. L.
,
2008
, “
A Review of Some Plasticity and Viscoplasticity Constitutive Theories
,”
Int. J. Plast.
,
24
(
10
), pp.
1642
1693
.
136.
Davidson
,
T. E.
,
Kendall
,
D. P.
, and
Reiner
,
A. N.
,
1963
, “
Residual Stresses in Thick-Walled Cylinders Resulting From Mechanically Induced Overstrain
,”
Exp. Mech.
,
3
(
11
), pp.
253
262
.
137.
Clark
,
G.
,
1982
, “
Residual Stresses in Swage-Autofrettaged Thick-Walled Cylinders
,” Materials Research Labs, Ascot Vale, Australia, Report No. MRL-R-847.
138.
Clark
,
G.
,
1984
, “
Fatigue Crack Growth Through Residual Stress Fields—Theoretical and Experimental Studies on Thick-Walled Cylinders
,”
Theor. Appl. Fract. Mech.
,
2
(
2
), pp.
111
125
.
139.
Lee
,
S.
,
O’Hara
,
G.
,
Olmstead
,
V.
, and
Capsimalis
,
G.
,
1992
, “
Characterization of Residual Stresses in an Eccentric Swage Autofrettaged Thick-Walled Steel Cylinder
,” Army Armament Research Development and Engineering Center, Benet Weapons Lab, New York, Report No.
ARCCB-TR-92017
.
140.
Zhan
,
R.
,
Tao
,
C.
,
Han
,
L.
,
Huang
,
Y.
, and
Han
,
D.
,
2015
, “
The Residual Stress and Its Influence on the Fatigue Strength Induced by Explosive Autofrettage
,”
Explos. Shock Waves
,
25
(
3
), pp.
239
243
.
141.
Zhan
,
R.
,
Tao
,
C.
, and
Zhao
,
G.
,
1999
, “
Elasto-Plastical Dynamic Analysis of Explosive Autofrettage
,”
J.-Southwest Pet. Inst.
,
21
(
4
), pp.
82
85
.
142.
Bastable
,
M. J.
,
1992
, “
From Breechloaders to Monster Guns: Sir William Armstrong and the Invention of Modern Artillery, 1854-1880
,”
Technol. Cult.
,
33
(
2
), pp.
213
247
.
143.
Wen
,
E.
,
Barbero
,
E.
, and
Tygielski
,
P.
,
2002
, “
Autofrettage to Offset CTE Mismatch in Metal-Lined Composite Cryogenic Feed Lines
,”
AIAA
Paper No. 2002-1524.
144.
Kargarnovin
,
M. H.
,
Rezai Zarei
,
A.
, and
Darijani
,
H.
,
2005
, “
Wall Thickness Optimization of Thick-Walled Spherical Vessel Using Thermo-Elasto-Plastic Concept
,”
Int. J. Pressure Vessels Piping
,
82
(
5
), pp.
379
385
.
145.
Darijani
,
H.
,
Kargarnovin
,
M. H.
, and
Naghdabadi
,
R.
,
2009
, “
Design of Spherical Vessels Under Steady-State Thermal Loading Using Thermo-Elasto–Plastic Concept
,”
Int. J. Pressure Vessels Piping
,
86
(
2–3
), pp.
143
152
.
146.
Kamal
,
S. M.
,
Dixit
,
U. S.
,
Roy
,
A.
,
Liu
,
Q.
, and
Silberschmidt
,
V. V.
,
2017
, “
Comparison of Plane-Stress, Generalized-Plane-Strain and 3D FEM Elastic–Plastic Analyses of Thick-Walled Cylinders Subjected to Radial Thermal Gradient
,”
Int. J. Mech. Sci.
,
131–132
, pp.
744
752
.
147.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.
148.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Study on Enhancing the Performance of Thermally Autofrettaged Cylinder Through Shrink-Fitting
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094501
.
149.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2017
, “
A Finite Element Method Study of Combined Hydraulic and Thermal Autofrettage Process
,”
ASME J. Pressure Vessel Technol.
,
139
(
4
), p.
041204
.
150.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal.
,
51
(
2
), pp.
144
160
.
151.
Zare
,
H. R.
, and
Darijani
,
H.
,
2017
, “
Strengthening and Design of the Linear Hardening Thick-Walled Cylinders Using the New Method of Rotational Autofrettage
,”
Int. J. Mech. Sci.
,
124–125
, pp.
1
8
.
152.
Kamal
,
S. M.
,
2017
, “
An Analytical Study of Rotational Autofrettage of Thick-Walled Disks
,” The National Conference on Sustainable Mechanical Engineering: Today and Beyond, Tezpur, Assam, Mar. 24–26, pp.
69
74
.
153.
Chakrabarty
,
J.
,
2006
,
Theory of Plasticity
,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
.
154.
Morrison
,
J. L. M.
,
Crossland
,
B.
, and
Parry
,
J. S. C.
,
1960
, “
Strength of Thick Cylinders Subjected to Repeated Internal Pressure
,”
Proc. Inst. Mech. Eng.
,
174
(
1
), pp.
95
117
.
155.
Parker
,
A. P.
,
2004
, “
A Re-Autofrettage Procedure for Mitigation of Bauschinger Effect in Thick Cylinders
,”
ASME J. Pressure Vessel Technol.
,
126
(
4
), pp.
451
454
.
156.
Varga
,
L.
,
1991
, “
Design of Optimum High-Pressure Monobloc Vessels
,”
Int. J. Pressure Vessels Piping
,
48
(
1
), pp.
93
110
.
157.
Zhu
,
R.
, and
Yang
,
J.
,
1998
, “
Autofrettage of Thick Cylinders
,”
Int. J. Pressure Vessels Piping
,
75
(
6
), pp.
443
446
.
158.
Darijani
,
H.
,
Kargarnovin
,
M. H.
, and
Naghdabadi
,
R.
,
2009
, “
Design of Thick-Walled Cylindrical Vessels Under Internal Pressure Based on Elasto-Plastic Approach
,”
Mater. Des.
,
30
(
9
), pp.
3537
3544
.
159.
Çandar
,
H.
, and
Filiz
,
İ. H.
,
2017
, “
Optimum Autofrettage Pressure for a High Pressure Cylinder of a Waterjet Intensifier Pump
,”
Univers. J. Eng. Sci.
,
5
(
3
), pp.
44
55
.
160.
Perl
,
M.
, and
Perry
,
J.
,
2010
, “
The Beneficial Contribution of Realistic Autofrettage to the Load-Carrying Capacity of Thick-Walled Spherical Pressure Vessels
,”
ASME J. Pressure Vessel Technol.
,
132
(
1
), p.
011204
.
161.
ASME
,
2007
, “
Design Using Autofrettage
,” ASME Pressure Vessel and Piping Design Code, Division 3, Section 8, Article KD-5,
American Society of Mechanical Engineers
, New York, pp.
71
73
.
162.
Banks-Sills
,
L.
, and
Marmur
,
I.
,
1989
, “
Influence of Autofrettage on Fracture Toughness
,”
Int. J. Fract.
,
40
(
2
), pp.
143
155
.
You do not currently have access to this content.