Abstract

Corrosion damage is reported to be one of the leading causes of steel pipeline failure causing significant financial losses to operators and damage to the surrounding environment. As part of a rising confrontation to pipeline integrity management, researchers are continuously seeking better ways to assist on how to identify, assess, and prevent such incidents. Thus, there is a crucial need to establish a connection between assessment of pipeline condition and its structural stability. To achieve this, a three-dimensional finite element (FE) model is developed. The effects of geometry parameters such as defect thickness and spread angle are considered. Results show that thicker pipelines with corrosion groove perform better structurally than slender equivalents. The impact of corrosion damage is assessed to be significant on pipe stability with pipelines experiencing higher displacement and wall stresses with increasing defect depth and spread angle. A protective measure has been proposed using the buried pipes bedding system. The most critical spread angle is at 60 deg for unprotected pipe sections and 90 deg for bedded protected sections.

References

1.
Tee
,
K. F.
,
Ebenuwa
,
A. U.
, and
Zhang
,
Y.
,
2018
, “
Fuzzy-Based Robustness Assessment of Buried Pipelines
,”
ASCE J. Pipeline Syst. Eng. Pract.
,
9
(
1
), p.
06017007
.10.1061/(ASCE)PS.1949-1204.0000304
2.
Armaghani
,
D. J.
,
Faizi
,
K.
,
Hajihassani
,
M.
,
Tonnizam Mohamad
,
E.
, and
Nazir
,
R.
,
2015
, “
Effects of Soil Reinforcement on Uplift Resistance of Buried Pipeline
,”
Measurement
,
64
, pp.
57
63
.10.1016/j.measurement.2014.12.042
3.
González
,
O.
,
Fraile
,
A.
, and
Hermanns
,
L.
,
2015
, “
A Numerical and Semi-Analytical Comparison for Structural Analysis of Fault-Crossing Pipelines
,”
C. R.-Mec.
,
343
(
7–8
), pp.
397
409
.10.1016/j.crme.2015.06.003
4.
Rahman
,
M. A.
, and
Taniyama
,
H.
,
2015
, “
Analysis of a Buried Pipeline Subjected to Fault Displacement: A DEM and FEM Study
,”
Soil Dyn. Earthquake Eng.
,
71
, pp.
49
62
.10.1016/j.soildyn.2015.01.011
5.
Uckan
,
E.
,
Akbas
,
B.
,
Shen
,
J.
,
Rou
,
W.
,
Paolacci
,
F.
, and
O'Rourke
,
M.
,
2015
, “
A Simplified Analysis Model for Determining the Seismic Response of Buried Steel Pipes at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
75
, pp.
55
65
.10.1016/j.soildyn.2015.03.001
6.
Ebenuwa
,
A. U.
,
Tee
,
K. F.
, and
Zhang
,
Y.
,
2016
, “
Structural Robustness Assessment of Corroded Buried Pipes
,”
The WIT Transactions on the Built Environment
, Vol.
166
,
S.
,
Hernandaz
,
C. A.
,
Brebbia
, and
W. P.
,
de Wilde
, eds.,
WIT Press
,
Ashurst, Southampton, UK
, pp.
81
92
.
7.
Pesinis
,
K.
, and
Tee
,
K. F.
,
2018
, “
Bayesian Updating of Stochastic Process-Based Models for Corroding Gas Pipelines Based on Imperfect Inspection Information
,”
The Safety and Reliability—Safe Societies in a Changing World
,
S.
,
Haugen
, ed.,
Taylor and Francis Group
,
London
, pp.
2219
2226
.
8.
Shafiee
,
M.
, and
Ayudiani
,
P. S.
,
2015
, “
Development of a Risk-Based Integrity Model for Offshore Energy Infrastructures - Application to Oil and Gas Pipelines
,”
Int. J. Process Syst. Eng.
,
3
(
4
), pp.
211
231
.10.1504/IJPSE.2015.075092
9.
Pesinis
,
K.
, and
Tee
,
K. F.
,
2017
, “
Statistical Model and Structural Reliability Analysis for Onshore Gas Transmission Pipelines
,”
Eng. Failure Anal.
,
82
, pp.
1
15
.10.1016/j.engfailanal.2017.08.008
10.
Ebenuwa
,
A. U.
, and
Tee
,
K. F.
,
2019
, “
Reliability Estimation of Buried Steel Pipes Subjected to Seismic Effect
,”
Transp. Geotech.
,
20
, p.
100242
.10.1016/j.trgeo.2019.100242
11.
Nanan
,
K.
,
2018
, “
The 8 Most Common Forms of Metal Corrosion
,” accessed Oct. 20, 2018, https://www.corrosionpedia.com/the-8-most-common-forms-of-metal-corrosion/2/1680
12.
Tee
,
K. F.
, and
Pesinis
,
K.
,
2017
, “
Reliability Prediction for Corroding Natural Gas Pipelines
,”
Tunnelling Underground Space Technol.
,
65
, pp.
91
105
.10.1016/j.tust.2017.02.009
13.
Khan
,
L. R.
, and
Tee
,
K. F.
,
2016
, “
Risk-Cost Optimization of Buried Pipelines Using Subset Simulation
,”
ASCE J. Infrastruct. Syst.
,
22
(
2
), p.
04016001
.10.1061/(ASCE)IS.1943-555X.0000287
14.
Cronin
,
D. S.
,
2000
, “
Assessment of Corrosion Defects in Pipelines
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
15.
Xu
,
L.
,
2013
, “Assessment of Corrosion Defects on High-Strength Steel Pipelines,”
University of Alberta
,
Edmonton, AB, Canada
.
16.
Ebenuwa
,
A. U.
, and
Tee
,
K. F.
,
2019
, “
Fuzzy-Based Optimised Subset Simulation for Reliability Analysis of Engineering Structures
,”
Struct. Infrastruct. Eng.
,
15
(
3
), pp.
413
425
.10.1080/15732479.2018.1552977
17.
Bueno
,
A. H. S.
,
Moreira
,
E. D.
, and
Gomes
,
J. A. C. P.
,
2014
, “
Evaluation of Stress Corrosion Cracking and Hydrogen Embrittlement in an API Grade Steel
,”
Eng. Failure Anal.
,
36
, pp.
423
431
.10.1016/j.engfailanal.2013.11.012
18.
Motta
,
R. S.
,
Cabral
,
H. L. D.
,
Afonso
,
S. M. B.
,
Willmersdorf
,
R. B.
,
Bouchonneau
,
N.
,
Lyra
,
P. R. M.
, and
de Andrade
,
E. Q.
,
2017
, “
Comparative Studies for Failure Pressure Prediction of Corroded Pipelines
,”
Eng. Failure Anal.
,
81
, pp.
178
192
.10.1016/j.engfailanal.2017.07.010
19.
Oh
,
C. S.
,
Kim
,
N. H.
,
Kim
,
Y. J.
,
Baek
,
J. H.
,
Kim
,
Y. P.
, and
Kim
,
W. S.
,
2011
, “
A Finite Element Ductile Failure Simulation Method Using Stress-Modified Fracture Strain Model
,”
Eng. Fract. Mech.
,
78
(
1
), pp.
124
137
.10.1016/j.engfracmech.2010.10.004
20.
Al-Owaisi
,
S. S.
,
Becker
,
A. A.
, and
Sun
,
W.
,
2016
, “
Analysis of Shape and Location Effects of Closely Spaced Metal Loss Defects in Pressurised Pipes
,”
Eng. Failure Anal.
,
68
, pp.
172
186
.10.1016/j.engfailanal.2016.04.032
21.
Xu
,
W. Z.
,
Li
,
C. B.
,
Choung
,
J.
, and
Lee
,
J. M.
,
2017
, “
Corroded Pipeline Failure Analysis Using Artificial Neural Network Scheme
,”
Adv. Eng. Software
,
112
, pp.
255
266
.10.1016/j.advengsoft.2017.05.006
22.
Pesinis
,
K.
, and
Tee
,
K. F.
,
2018
, “
Bayesian Analysis of Small Probability Incidents for Corroding Energy Pipelines
,”
Eng. Struct.
,
165
, pp.
264
277
.10.1016/j.engstruct.2018.03.038
23.
Watkins
,
R. K.
, and
Loren
,
R. A.
,
2000
,
Structural Mechanics of Buried Pipes
,
CRC Press
,
Boca Raton, FL
, p.
444
.
24.
Katona
,
M.
,
Forrest
,
J.
,
Odello
,
R.
, and
Allgood
,
J.
,
1976
, “
CANDE—A Modern Approach for the Structural Design and Analysis of Buried Culverts
,” Federal Highway Administration, Office of Research and Development, Washington, DC, Report No. FHWA RD-77-5.
25.
Duncan
,
J. M.
,
Byrne
,
P.
,
Wong
,
K. S.
, and
Mabry
,
P.
,
1980
, “
Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analysis of Stresses and Movements in Soil Masses
,” University of California, Berkeley, CA, Report No. UCB/GT/80-01.
26.
Leonards
,
G. A.
,
Wu
,
T. H.
, and
Juang
,
C. H.
,
1981
, “
Predicting Performance of Buried Conduits
,” Indiana Department of Transportation and Purdue University, West Lafayette, IN, Report No. FHWA/IN/JHRP-81/03.
27.
Nyby
,
B.
,
1981
, “
Finite Element Analysis of Soil-Structure Interaction
,” Ph.D. thesis, Utah State University, Logan, UT.
28.
Sharp
,
K. D.
,
Anderson
,
L. R.
,
Moser
,
A. P.
, and
Warner
,
M. J.
,
1984
,
Applications of Finite Element Analysis of FRP Pipe Performance
,
Buried Structures Laboratory, Utah State University
,
Logan, UT
.
29.
El-taher
,
M.
, and
Moore
,
I. D.
,
2008
, “
Finite Element Study of Stability of Corroded Metal Culverts
,”
Transp. Res. Board
,
2050
(
1
), pp.
157
166
.10.3141/2050-16
30.
Lui
,
P.
,
Zhang
,
B.
, and
Shi
,
P.
,
2010
, “
Failure Analysis of Natural Gas Buried X65 Steel Pipeline Under Deflection Load Using Finite Element Method
,”
Mater. Des.
,
31
, pp.
1384
1391
.10.1016/j.matdes.2009.08.045
31.
Vettorelo
,
P. V.
,
Moreno
,
F. M.
, and
Claria
,
J. J.
,
2016
, “
Modelling of Geosynthetic Reinforced Buried Flexible Pipes
,”
Third Pan American Conference on Geosynthetics
, Miami, FL, Apr. 10–13, pp.
1808
1816
.
32.
Yu
,
J.
,
Wang
,
H.
,
Fan
,
Z.
, and
Yu
,
Y.
,
2017
, “
Computation of Plastic Collapse Capacity of 2D Ring With Random Pitting Corrosion Defect
,”
Thin-Walled Struct.
,
119
, pp.
727
736
.10.1016/j.tws.2017.07.025
33.
Alzabeebee
,
S.
,
Chapman
,
D. N.
, and
Faramarzi
,
A.
,
2018
, “
A Comparative Study of the Response of Buried Pipes Under Static and Moving Loads
,”
Transp. Geotech.
,
15
, pp.
39
46
.10.1016/j.trgeo.2018.03.001
34.
Alzabeebee
,
S.
,
Chapman
,
D. N.
, and
Faramarzi
,
A.
,
2018
, “
Innovative Approach to Determine the Minimum Wall Thickness of Flexible Buried Pipes
,”
Geomechanics Eng.
,
15
(
2
), pp.
755
767
.10.12989/gae.2018.15.2.755
35.
Hegde
,
A. M.
, and
Sitharam
,
T. G.
,
2015
, “
Experimental and Numerical Studies on Protection of Buried Pipelines and Underground Utilities Using Geocells
,”
Geotextiles Geomembr.
,
43
(
5
), pp.
372
381
.10.1016/j.geotexmem.2015.04.010
36.
Zhang
,
J.
,
Liang
,
Z.
,
Feng
,
D.
,
Zhang
,
C.
,
Xia
,
C.
, and
Tu
,
Y.
,
2016
, “
Response of the Buried Steel Pipeline Caused by Perilous Rock Impact: Parametric Study
,”
J. Loss Prev. Process Ind.
,
43
, pp.
385
396
.10.1016/j.jlp.2016.06.019
37.
Srivastava
,
A.
, and
Babu
,
G. L. S.
,
2011
, “
Deflection and Buckling of Buried Flexible Pipe-Soil System in a Spatially Variable Soil Profile
,”
Geomechaics Eng.
,
3
(
3
), pp.
169
188
.10.12989/gae.2011.3.3.169
38.
Alzabeebee
,
S.
,
Jefferson
,
I.
,
Faramarzi
,
A.
, and
Chapman
,
D.
,
2016
, “
The Response of Buried Pipes to UK Standard Traffic Loading
,”
Geotech. Eng.
,
170
(
1
), pp.
1
13
.10.1680/jgeen.15.00190
39.
Athmani
,
A.
,
Khemis
,
A.
,
Hacene-Chaouche
,
A.
,
Tee
,
K. F.
,
Ferreira
,
T. M.
, and
Vicente
,
R.
,
2019
, “
Buckling Uncertainty Analysis for Steel Pipelines Buried in Elastic Soil Using FOSM and MCS Methods
,”
Int. J. Steel Struct.
,
19
(
2
), pp.
381
397
.10.1007/s13296-018-0126-7
40.
Watkins
,
R. K.
, and
Spangler
,
M. G.
,
1958
, “
Some Characteristics of the Modulus of Passive Resistance of Soil: A Study in Similitude
,” Proceedings of 37th Annual Meeting of the Highway Research Board, Highway Research Board, Washington, DC, pp.
576
583
.
41.
Burns
,
J. Q.
, and
Richards
,
R. M.
,
1964
, “
Attenuation of Stresses for Buried Cylinders
,”
Symposium on Soil Structure Interaction
, University of Arizona, Tucson, AZ, June 8–11, pp.
378
392
.
42.
AASHTO,
1994
, AASHTO LRFD Bridge Design Specifications, 1st ed.,
American Association of State Highway and Transportation Officials
,
Washington, DC
.
43.
JM Eagle
,
2009
, “
Depth of Burial for PVC Pipe
,” JM Eagle, Los Angeles, CA,
Technical Bull
etin, pp.
1
4
.
44.
Stephenson
,
D.
,
1989
,
Pipeline Design for Water Engineers
, 3rd ed., Vol.
40
,
Elsevier Scientific Publishing Company
,
New York
.
45.
Moser
,
A.
, and
Folkman
,
S.
,
2008
,
Buried Pipe Design
, 3rd ed.,
McGraw-Hill
,
New York
.
46.
Tee
,
K. F.
,
Khan
,
L. R.
, and
Coolen-Maturi
,
T.
,
2015
, “
Application of Receiver Operating Characteristic Curve for Pipeline Reliability Analysis
,”
Proc. Inst. Mech. Eng., Part O
,
229
(
3
), pp.
181
192
.10.1177/1748006X15571115
47.
Spangler
,
M. G.
,
1941
, “The Structural Design of Flexible Culverts,”
Iowa Engineering Experiment Station, Iowa State College of Agriculture and Mechanic Arts
, The Iowa State College bulletin, No. 30, Vol. XL, p.
84
.
48.
BSI
,
1997
, “Structural Design of Buried Pipelines Under Various Conditions of Loading—Part 1: General Requirements,”
BSI Group
,
London, UK
, Standard No. BS EN
1295
1
.
49.
Zhang
,
J.
,
Liang
,
Z.
, and
Zhao
,
G.
,
2016
, “
Mechanical Behaviour Analysis of a Buried Steel Pipeline Under Ground Overload
,”
Eng. Failure Anal.
,
63
, pp.
131
145
.10.1016/j.engfailanal.2016.02.008
50.
Khemis
,
A.
,
Hacene-Chaouche
,
A.
,
Athmani
,
A.
, and
Tee
,
K. F.
,
2016
, “
Uncertainty Effects of Soil and Structural Properties on the Buckling of Flexible Pipes Shallowly Buried in Winkler Foundation
,”
Struct. Eng. Mech.
,
59
(
4
), pp.
739
759
.10.12989/sem.2016.59.4.739
51.
Masada
,
T.
,
2000
, “
Modified Iowa Formula for Vertical Deflection of Buried Flexible Pipe
,”
Transp. Eng.
,
125
(
5
), pp.
440
446
.10.1061/(ASCE)0733-947X(2000)126:5(440)
52.
Ryu
,
D. M.
,
Wang
,
L.
,
Kim
,
S. K.
, and
Lee
,
J. M.
,
2017
, “
Comparative Study on Deformation and Mechanical Behavior of Corroded Pipe—Part I: Numerical Simulation and Experimental Investigation Under Impact Load
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
5
), pp.
509
524
.10.1016/j.ijnaoe.2017.01.005
You do not currently have access to this content.