Abstract

This work investigates the response of industrial steel pipe elbows subjected to severe cyclic loading (e.g., seismic or shutdown/startup conditions), associated with the development of significant inelastic strain amplitudes of alternate sign, which may lead to low-cycle fatigue. To model this response, three cyclic-plasticity hardening models are employed for the numerical analysis of large-scale experiments on elbows reported elsewhere. The constitutive relations of the material model follow the context of von Mises cyclic elasto-plasticity, and the hardening models are implemented in a user subroutine, developed by the authors, which employs a robust numerical integration scheme, and is inserted in a general-purpose finite element software. The three hardening models are evaluated in terms of their ability to predict the strain range at critical locations, and in particular, strain accumulation over the load cycles, a phenomenon called “ratcheting.” The overall good comparison between numerical and experimental results demonstrates that the proposed numerical methodology can be used for simulating accurately the mechanical response of pipe elbows under severe inelastic repeated loading. Finally, this paper highlights some limitations of conventional hardening rules in simulating multi-axial material ratcheting.

References

1.
EPRI,
1992
, “
Piping and Fitting Dynamic Reliability Program
,”
Vol.
2-Component Test Report, EPRI, Palo Alto, CA, Contract No. RP
1543
15
.
2.
EPRI
,
1994
, “
Fatigue Management Handbook
,”
Vol.
2
-Fatigue Screening Criteria, EPRI, Palo Alto, CA, Contract No. TR-104534-V2.
3.
Rider
,
R. J.
,
Harvey
,
S. J.
, and
Chandler
,
H. D.
,
1995
, “
Fatigue and Ratcheting Interactions
,”
Int. J. Fatigue
,
17
(
7
), pp.
507
511
.10.1016/0142-1123(95)00046-V
4.
Lu
,
X.
,
2003
, “Influence of Residual Stress on Fatigue Failure of Welded Joints,”
North Carolina State University
,
Raleigh, NC
.
5.
Wei
,
E.
,
Postberg
,
B.
,
Nicak
,
T.
, and
Rudolph
,
J.
,
2004
, “
Simulation of Ratcheting and Low Cycle Fatigue
,”
Int. J. Pressure Vessels Piping
,
81
(
3
), pp.
235
242
.10.1016/j.ijpvp.2004.01.002
6.
Shaw
,
P. K.
, and
Kyriakides
,
S.
,
1985
, “
Inelastic Analysis of Thin-Walled Tubes Under Cyclic Bending
,”
Int. J. Solids Struct.
,
21
(
11
), pp.
1073
1100
.10.1016/0020-7683(85)90044-7
7.
Corona
,
E.
, and
Kyriakides
,
S.
,
1991
, “
An Experimental Investigation of the Degradation and Buckling of Circular Tubes Under Cyclic Bending and External Pressure
,”
Thin-Walled Struct.
,
12
(
3
), pp.
229
263
.10.1016/0263-8231(91)90048-N
8.
Moreton
,
D. N.
,
Yahiaoui
,
K.
, and
Moffat
,
D. G.
,
1996
, “
Onset of Ratchetting in Pressurised Piping Elbows Subjected to In-Plane Bending Moments
,”
Int. J. Pressure Vessels Piping
,
68
(
1
), pp.
73
79
.10.1016/0308-0161(94)00041-7
9.
Yahiaoui
,
K.
,
Moffat
,
D. G.
, and
Moreton
,
D. N.
,
1996
, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic In-Plane Bending
,”
J. Strain Anal. Eng. Des.
,
31
(
2
), pp.
135
151
.10.1243/03093247V312135
10.
Yahiaoui
,
K.
,
Moreton
,
D. N.
, and
Moffat
,
D. G.
,
1996
, “
Response and Cyclic Strain Accumulation of Pressurized Piping Elbows Under Dynamic Out-of-Plane Bending
,”
J. Strain Anal. Eng. Des.
,
31
(
2
), pp.
153
166
.10.1243/03093247V312153
11.
Slagis
,
G. C.
,
1998
, “
Experimental Data on Seismic Response of Piping Components
,”
ASME J. Pressure Vessel Technol.
,
120
(
4
), pp.
449
455
.10.1115/1.2842358
12.
Suzuki
,
K.
,
Namita
,
Y. Y.
, and
Abe
,
H. H.
,
2002
, “
Seismic Proving Test of Ultimate Piping Strength: Current Status of Preliminary Tests-II
,”
ASME
Paper No. ICONE10-22225.10.1115/ICONE10-22225
13.
Chen
,
X.
,
Gao
,
B.
, and
Chen
,
G.
,
2006
, “
Ratcheting Study of Pressurized Elbows Subjected to Reversed In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
525
532
.10.1115/1.2349562
14.
Shi
,
H.
,
Chen
,
G.
,
Wang
,
Y.
, and
Chen
,
X.
,
2013
, “
Ratcheting Behavior of Pressurized Elbow Pipe With Local Wall Thinning
,”
Int. J. Pressure Vessels Piping
,
102–103
, pp.
14
23
.10.1016/j.ijpvp.2012.12.002
15.
Vishnuvardhan
,
S.
,
Raghava
,
G.
,
Gandhi
,
P.
,
Saravanan
,
M.
,
Goyal
,
S.
,
Arora
,
P.
,
Gupta
,
S. K.
, and
Bhasin
,
V.
,
2013
, “
Ratcheting Failure of Pressurised Straight Pipes and Elbows Under Reversed Bending
,”
Int. J. Pressure Vessels Piping
,
105–106
, pp.
79
89
.10.1016/j.ijpvp.2013.03.005
16.
Varelis
,
G. E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2013
, “
Pipe Elbows Under Strong Cyclic Loading
,”
ASME J. Pressure Vessel Technol.
,
135
(
1
), p. 011207.10.1115/1.4007293
17.
Varelis
,
G. E.
, and
Karamanos
,
S. A.
,
2015
, “
Low-Cycle Fatigue of Pressurized Steel Elbows Under In-Plane Bending
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p. 011401.10.1115/1.4027316
18.
Liu
,
C.
,
Yu
,
D.
,
Akram
,
W.
,
Cai
,
Y.
, and
Chen
,
X.
,
2019
, “
Ratcheting Behavior of Pressurized Elbow Pipe at Intrados Under Different Loading Paths
,”
Thin-Walled Struct.
,
138
, pp.
293
301
.10.1016/j.tws.2019.02.013
19.
Rahmatfam
,
A.
,
Zehsaz
,
M.
, and
Chakherlou
,
T. N.
,
2019
, “
Ratcheting Assessment of Pressurized Pipelines Under Cyclic Axial Loading: Experimental and Numerical Investigations
,”
Int. J. Pressure Vessels Piping
,
176
, p.
103970
.10.1016/j.ijpvp.2019.103970
20.
Foroutan
,
M.
,
Ahmadzadeh
,
G. R.
, and
Varvani-Farahani
,
A.
,
2018
, “
Axial and Hoop Ratcheting Assessment in Pressurized Steel Elbow Pipes Subjected to Bending Cycles
,”
Thin-Walled Struct.
,
123
, pp.
317
323
.10.1016/j.tws.2017.11.021
21.
Chen
,
X.
,
Chen
,
X.
,
Yu
,
D.
, and
Gao
,
B.
,
2013
, “
Recent Progresses in Experimental Investigation and Finite Element Analysis of Ratcheting in Pressurized Piping
,”
Int. J. Pressure Vessels Piping
,
101
, pp.
113
142
.10.1016/j.ijpvp.2012.10.008
22.
Bari
,
S.
, and
Hassan
,
T.
,
2000
, “
Anatomy of Coupled Constitutive Models for Ratcheting Simulation
,”
Int. J. Plast.
,
16
(
3–4
), pp.
381
409
.10.1016/S0749-6419(99)00059-5
23.
Bari
,
S.
, and
Hassan
,
T.
,
2001
, “
Kinematic Hardening Rules in Uncoupled Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
17
(
7
), pp.
885
905
.10.1016/S0749-6419(00)00031-0
24.
Bari
,
S.
, and
Hassan
,
T.
,
2002
, “
An Advancement in Cyclic Plasticity Modeling for Multiaxial Ratcheting Simulation
,”
Int. J. Plast.
,
18
(
7
), pp.
873
894
.10.1016/S0749-6419(01)00012-2
25.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
2007
, “
A Mathematical Representation of the Multiaxial Bauschinger Effect
,”
Mater. High Temp.
,
24
(
1
), pp.
1
26
.10.1179/096034007X207589
26.
Ayob
,
A. B.
,
Moffat
,
D. G.
, and
Mistry
,
J.
,
2003
, “
The Interaction of Pressure, In-Plane Moment and Torque Loadings on Piping Elbows
,”
Int. J. Pressure Vessels Piping
,
80
(
12
), pp.
861
869
.10.1016/j.ijpvp.2003.09.001
27.
Balan
,
C.
, and
Redekop
,
D.
,
2005
, “
The Effect of Bidirectional Loading on Fatigue Assessment of Pressurized Piping Elbows With Local Thinned Areas
,”
Int. J. Pressure Vessels Piping
,
82
(
3
), pp.
235
242
.10.1016/j.ijpvp.2004.07.020
28.
Oh
,
C.-S.
,
Kim
,
Y.-J.
, and
Park
,
C.-Y.
,
2008
, “
Shakedown Limit Loads for Elbows Under Internal Pressure and Cyclic In-Plane Bending
,”
Int. J. Pressure Vessels Piping
,
85
(
6
), pp.
394
405
.10.1016/j.ijpvp.2007.11.009
29.
Tseng
,
N. T.
, and
Lee
,
G. C.
,
1983
, “
Simple Plasticity Model of the Two Surface Type
,”
ASCE J. Eng. Mech.
,
109
(
3
), pp.
795
810
.10.1061/(ASCE)0733-9399(1983)109:3(795)
30.
Hassan
,
T.
, and
Rahman
,
S. M.
,
2008
, “
Simulation of Ratcheting Responses of Elbow Piping Components
,”
ASME
Paper No. PVP2009-77819.10.1115/PVP2009-77819
31.
Rahman
,
S. M.
,
Hassan
,
T.
, and
Corona
,
E.
,
2008
, “
Evaluation of Cyclic Plasticity Models in Ratcheting Simulation of Straight Pipes Under Cyclic Bending and Steady Internal Pressure
,”
Int. J. Plast.
,
24
(
10
), pp.
1756
1791
.10.1016/j.ijplas.2008.02.010
32.
Hassan
,
T.
, and
Rahman
,
M.
,
2015
, “
Constitutive Models in Simulating Low-Cycle Fatigue and Ratcheting Responses of Elbow
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031002
.10.1115/1.4029069
33.
Hassan
,
T.
,
Rahman
,
M.
, and
Bari
,
S.
,
2015
, “
Low-Cycle Fatigue and Ratcheting Responses of Elbow Piping Components
,”
ASME J. Pressure Vessel Technol.
,
137
(
3
), p.
031010
.10.1115/1.4029068
34.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery—Part I
,”
Int. J. Plast.
,
9
(
3
), pp.
375
390
. 10.1016/0749-6419(93)90042-O
35.
Islam
,
N.
, and
Hassan
,
T.
,
2019
, “
Development of a Novel Constitutive Model for Improved Structural Integrity Analysis of Piping Components
,”
Int. J. Pressure Vessel Piping
,
177
, p.
103989
.10.1016/j.ijpvp.2019.103989
36.
Fenton
,
M. A.
,
2014
, “
Low-Cycle Fatigue Failure and Ratcheting Responses of Short and Long Radius Elbows at Room and High Temperatures
,”
M.Sc. thesis
, NC State University, Raleigh, NC.10.1115/PVP2014-28805
37.
Sollogoub
,
P.
,
2017
, “
The OECD-NEA Programme on Metallic Component Margins Under High Seismic Loads (MECOS): Towards New Criteria
,”
ASME
Paper No. PVP2017-65516.10.1115/PVP2017-65516
38.
Labbé
,
P. B.
,
Reddy
,
G.
,
Mathon
,
R.
,
Moreau
,
C. F.
, and
Karamanos
,
S. A.
,
2016
, “
The OECD-NEA Programme on Metallic Component Margins Under High Seismic Loads (MECOS)
,”
ASME
Paper No. PVP2016-63119.10.1115/PVP2016-63119
39.
Chatziioannou
,
K.
,
Karamanos
,
S. A.
, and
Huang
,
Y.
,
2019
, “
An Implicit Numerical Scheme for Cyclic Elastoplasticity and Ratcheting Under Plane Stress Conditions
,”
Comput. Struct.
, Epub.
40.
ABAQUS
,
2016
, “Standards User's Manual, Version 2016,”
Hibbitt/Simulia and Sorensen/Dassault Systems
, Providence, RI.
41.
Pappa
,
P.
,
Varelis
,
G. E.
,
Vathi
,
M.
,
Perdikaris
,
P. C.
,
Karamanos
,
S. A.
,
Ferino
,
J.
,
Lucci
,
A.
,
Mecozzi
,
E.
,
Demofonti
,
G.
,
Gresnigt
,
A. M.
,
Dijkstra
,
G. J.
,
Reza
,
M. S.
,
Kumar
,
A.
,
Paolacci
,
F.
,
Bursi
,
O. S.
,
Kopp
,
M.
,
Pinkawa
,
M.
,
Wieschollek
,
M.
,
Hoffmeister
,
B.
,
Stamou
,
A.
,
Diamanti
,
K.
,
Papatheocharis
,
T.
,
Botsis
,
C.
,
Chandrinos
,
I.
, and
Doukas
,
I.
,
2012
, “Structural Safety of Industrial Steel Tanks, Pressure Vessels and Piping Systems Under Seismic Loading,” INDUSE RFCS Project, Brussels, Belgium, Report No.
RFSR-CT-2009-00022
.10.2777/49423
42.
American Society of Mechanical Engineers
,
2007
, “Factory-Made Wrought Butt Welding Fittings,” ASME, New York, Standard No.
ASME B16.9
.https://www.asme.org/codes-standards/find-codes-standards/b16-9-factory-made-wrought-buttwelding-fittings
43.
Simo
,
J. C.
, and
Taylor
,
R. L.
,
1986
, “
A Return Mapping Algorithm for Plane Stress Elastoplasticity
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
649
670
.10.1002/nme.1620220310
44.
Chaboche
,
J. L.
,
1986
, “
Time-Independent Constitutive Theories for Cyclic Plasticity
,”
Int. J. Plast.
,
2
(
2
), pp.
149
188
.10.1016/0749-6419(86)90010-0
45.
Chaboche
,
J. L.
,
1991
, “
On Some Modifications of Kinematic Hardening to Improve the Description of Ratchetting Effects
,”
Int. J. Plast.
,
7
(
7
), pp.
661
678
.10.1016/0749-6419(91)90050-9
46.
Burlet
,
H.
, and
Cailletaud
,
G.
,
1986
, “
Numerical Techniques for Cyclic Plasticity at Variable Temperature
,”
Eng. Comput.
,
3
(
2
), pp.
143
153
.10.1108/eb023652
47.
ASTM
,
2016
, “
Standard Test Methods and Definitions for Mechanical Testing of Steel Products
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM A370-80a
.https://www.astm.org/Standards/A3htm70
48.
European Convention for Constructional Steelwork (ECCS)
,
1986
, “Recommended Testing Procedure for Assessing the Behavior of Structural Steel Elements Under Cyclic Loads,” ECCS, Brussels, Belgium, Publication No.
45
.https://www.worldcat.org/title/recommended-testing-procedure-for-assessing-the-behaviour-of-structural-steel-elements-under-cyclic-loads/oclc/28161128
You do not currently have access to this content.