Abstract

Long-distance buried pipelines inescapably go through seismic fracture zones which makes the buried pipelines be easily influenced by the diastrophism. A strong and resilient pipe can withstand a certain degree of seismic oscillation. However, it is really difficult for buried pipelines to resist the permanent ground displacement caused by faulting and surface damage. Most of the existing studies only focus on the two-phase contact between pipeline and soil, and the mechanical behavior of the cross-fault pipeline under transportation condition has not been studied. In this article, ADINA finite element software is used to establish a pipe-soil-fluid three-phase coupling model based on fluid–structure interaction (FSI), and the influence of the parameters of pipe, fluid and fault on the mechanical properties of cross-fault buried gas pipeline is studied. The model considering the effect of fluid–structure interaction can effectively simulate the mechanical response of pipelines in the actual working condition. The work presented in this article can provide a reference for the design and safety of cross-fault buried pipeline conveying fluid.

References

1.
Leung
,
G. C.
,
2011
, “
China's Energy Security: Perception and Reality
,”
Energy Policy
,
39
(
3
), pp.
1330
1337
.10.1016/j.enpol.2010.12.005
2.
Kennedy
,
R. P.
,
Chow
,
A. W.
, and
Williamson
,
R. A.
,
1977
, “
Fault Movement Effects on Buried Oil Pipeline
,”
Transp. Eng. J.
,
103
(
5
), pp.
617
633
.10.1061/TPEJAN.0000659
3.
Melissianos
,
V. E.
,
Vamvatsikos
,
D.
, and
Gantes
,
C. J.
,
2017
, “
Performance Assessment of Buried Pipelines at Fault Crossings
,”
Earthquake Spectra
,
33
(
1
), pp.
201
218
.10.1193/122015eqs187m
4.
Zeng
,
X.
,
Dong
,
F. F.
,
Xie
,
X. D.
, and
Du
,
G. F.
,
2019
, “
A New Analytical Method of Strain and Deformation of Pipeline Under Fault Movement
,”
Int. J. Pressure Vessel Pip.
,
172
, pp.
199
211
.10.1016/j.ijpvp.2019.03.005
5.
Trifonov
,
O. V.
,
2015
, “
Numerical Stress-Strain Analysis of Buried Steel Pipelines Crossing Active Strike-Slip Faults With an Emphasis on Fault Modeling Aspects
,”
J. Pipeline Syst. Eng. Pract.
,
6
(
1
), p.
04014008
.10.1061/(ASCE)PS.1949-1204.0000177
6.
Liu
,
W.
,
Guo
,
Q.
,
Qiao
,
C. F.
, and
Hou
,
W. G.
,
2019
, “
Strain Design Method of Buried Pipeline Crossing Fault
,”
Eng. Failure Anal.
,
105
, pp.
659
671
.10.1016/j.engfailanal.2019.07.036
7.
Uckan
,
E.
,
Akbas
,
B.
,
Shen
,
J.
,
Rou
,
W.
,
Paolacci
,
F.
, and
O'Rourke
,
M.
,
2015
, “
A Simplified Analysis Model for Determining the Seismic Response of Buried Steel Pipes at Strike-Slip Fault Crossings
,”
Soil Dyn. Earthquake Eng.
,
75
, pp.
55
65
.10.1016/j.soildyn.2015.03.001
8.
Naeen
,
A. M.
, and
Hosseininia
,
E. S.
,
2020
, “
Numerical Investigation on the Deformational Behavior of Continuous Buried Pipelines Under Reverse Faulting
,”
Arab. J. Sci. Eng.
,
45
(
10
), pp.
8475
8490
.10.1007/s13369-020-04766-2
9.
Yu
,
S. R.
,
Ma
,
L.
, and
Yu
,
L.
,
2015
, “
Analysis of Dynamic Characteristics of Fluid-Structure Interaction in Curved Infusion Pipelines
,”
Noise Vib. Control
,
35
(
4
), pp.
43
47
.10.3969/j.issn.1006-1335.2015.04.010
10.
Sreejith
,
B.
,
Jayaraj
,
K.
,
Ganesan
,
N.
,
Padmanabhan
,
C.
,
Chellapandi
,
P.
, and
Selvaraj
,
P.
,
2004
, “
Finite Element Analysis of Fluid–Structure Interaction in Pipeline Systems
,”
Nucl. Eng. Des.
,
227
(
3
), pp.
313
322
.10.1016/j.nucengdes.2003.11.005
11.
Zhu
,
H. J.
,
Zhang
,
W. L.
,
Feng
,
G.
, and
Qi
,
X.
,
2014
, “
Fluid–Structure Interaction Computational Analysis of Flow Field, Shear Stress Distribution and Deformation of Three-Limb Pipe
,”
Eng. Failure Anal.
,
42
, pp.
252
262
.10.1016/j.engfailanal.2014.04.021
12.
Zhao
,
J.
,
Yu
,
J. F.
, and
Lou
,
Q.
,
2019
, “
Modal Analysis of T-Shaped Pipes Based on a Fluid-Solid Interaction Model
,”
J. Vib. Shock
,
38
(
22
), p.
117
.
13.
Zhang
,
J.
,
Chen
,
Y.
, and
Zhang
,
H.
,
2020
, “
Local Buckling Evolution Mechanism of a Buried Steel Pipe Under Fault Movements
,”
Energy Sci. Eng.
,
8
(
2
), pp.
412
425
.10.1002/ese3.524
14.
Moradi
,
M.
,
Rojhan
,
M.
,
Galandarzadeh
,
A.
, and
Takada
,
S.
,
2013
, “
Centrifuge Modeling of Buried Continuous Pipelines Subjected to Normal Faulting
,”
Earthquake Eng. Eng. Vib.
,
12
(
1
), pp.
155
164
.10.1007/s11803-013-0159-z
15.
Özcebe
,
A. G.
,
Paolucci
,
R.
, and
Mariani
,
S.
,
2017
, “
Numerical Modeling of the Interaction of Pressurized Large Diameter Gas Buried Pipelines With Normal Fault Ruptures
,”
Soil Dyn. Earthquake Eng.
,
101
, pp.
105
115
.10.1016/j.soildyn.2017.07.017
16.
Rofooei
,
F. R.
,
Attari
,
N. K. A.
, and
Jalali
,
H. H.
,
2018
, “
New Method of Modeling the Behavior of Buried Steel Distribution Pipes Subjected to Reverse Faulting
,”
J. Pipeline Syst. Eng. Pract.
,
9
(
1
), p.
04017029
.10.1061/(ASCE)PS.1949-1204.0000296
17.
Soveiti
,
S.
, and
Mosalmani
,
R.
,
2020
, “
Mechanical Behavior of Buried Composite Pipelines Subjected to Strike-Slip Fault Movement
,”
Soil Dyn. Earthquake Eng.
,
135
, p.
106195
.10.1016/j.soildyn.2020.106195
18.
Pérez-Flores
,
P.
,
Cembrano
,
J.
,
Sánchez-Alfaro
,
P.
,
Veloso
,
E.
,
Arancibia
,
G.
, and
Roquer
,
T.
,
2016
, “
Tectonics, Magmatism and Paleo-Fluid Distribution in a Strike-Slip Setting: Insights From the Northern Termination of the Liquiñe–Ofqui Fault System, Chile
,”
Tectonophysics
,
680
, pp.
192
210
.10.1016/j.tecto.2016.05.016
19.
Kaya
,
E. S.
,
Uckan
,
E.
,
O'Rourke
,
M. J.
,
Karamanos
,
S. A.
,
Akbas
,
B.
,
Cakir
,
F.
, and
Cheng
,
Y.
,
2017
, “
Failure Analysis of a Welded Steel Pipe at Kullar Fault Crossing
,”
Eng. Failure Anal.
,
71
, pp.
43
62
.10.1016/j.engfailanal.2016.10.004
20.
Sarvanis
,
G. C.
,
Karamanos
,
S. A.
,
Vazouras
,
P.
,
Mecozzi
,
E.
,
Lucci
,
A.
, and
Dakoulas
,
P.
,
2018
, “
Permanent Earthquake-Induced Actions in Buried Pipelines: Numerical Modeling and Experimental Verification
,”
Earthquake Eng. Struct. D.
,
47
(
4
), pp.
966
987
.10.1002/eqe.3001
21.
Jung
,
J. K.
,
O'Rourke
,
T. D.
, and
Argyrou
,
C.
,
2016
, “
Multi-Directional Force-Displacement Response of Underground Pipe in Sand1
,”
Can. Geotech. J.
,
53
(
11
), pp.
1763
1781
.10.1139/cgj-2016-0059
22.
Mohitpour
,
M.
,
Golshan
,
H.
, and
Murray
,
A.
,
2007
,
Pipeline Design & Construction: A Practical Approach
, 3rd ed.,
ASME Press
,
New York
.
23.
Vazouras
,
P.
,
Dakoulas
,
P.
, and
Karamanos
,
S. A.
,
2015
, “
Pipe–Soil Interaction and Pipeline Performance Under Strike–Slip Fault Movements
,”
Soil Dyn. Earthquake Eng.
,
72
, pp.
48
65
.10.1016/j.soildyn.2015.01.014
24.
Rahman
,
M. A.
, and
Taniyama
,
H.
,
2015
, “
Analysis of a Buried Pipeline Subjected to Fault Displacement: A DEM and FEM Study
,”
Soil Dyn. Earthquake Eng.
,
71
, pp.
49
62
.10.1016/j.soildyn.2015.01.011
25.
Zhang
,
J.
,
Liang
,
Z.
, and
Han
,
C. J.
,
2015
, “
Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata
,”
PLos One
,
10
(
6
), p.
e0130459
.10.1371/journal.pone.0130459
26.
Vazouras
,
P.
, and
Karamanos
,
S. A.
,
2017
, “
Structural Behavior of Buried Pipe Bends and Their Effect on Pipeline Response in Fault Crossing Areas
,”
Earthquake Eng.
,
15
(
11
), pp.
4999
5024
.10.1007/s10518-017-0148-0
27.
Liu
,
X.
,
Zhang
,
H.
,
Li
,
M.
,
Xia
,
M.
,
Zheng
,
W.
,
Wu
,
K.
, and
Han
,
Y.
,
2016
, “
Effects of Steel Properties on the Local Buckling Response of High Strength Pipelines Subjected to Reverse Faulting
,”
J. Natural Gas Sci. Eng.
,
33
, pp.
378
387
.10.1016/j.jngse.2016.05.036
28.
Xu
,
L. J.
,
Chen
,
Y. B.
,
Liu
,
Q. Y.
, and
Gardoni
,
P.
,
2018
, “
Mechanical Behavior of Submarine Pipelines Under Active Strike-Slip Fault Movement
,”
J. Pipeline Syst. Eng. Pract.
,
9
(
3
), p.
04018006
.10.1061/(ASCE)PS.1949-1204.0000317
29.
Kim
,
J.
,
Nadukuru
,
S. S.
,
Pour-Ghaz
,
M.
,
Lynch
,
J. P.
,
Michalowski
,
R. L.
,
Bradshaw
,
A. S.
,
Green
,
R. A.
, and
Weiss
,
W. J.
,
2012
, “
Assessment of the Behavior of Buried Concrete Pipelines Subjected to Ground Rupture: Experimental Study
,”
J. Pipeline Syst. Eng. Pract.
,
3
(
1
), pp.
8
16
.10.1061/(ASCE)PS.1949-1204.0000088
30.
Rasouli
,
H.
, and
Fatahi
,
B.
,
2020
, “
Geofoam Blocks to Protect Buried Pipelines Subjected to Strike-Slip Fault Rupture
,”
Geotext. Geomembr.
,
48
(
3
), pp.
257
274
.10.1016/j.geotexmem.2019.11.011
31.
Demirci
,
H. E.
,
Karaman
,
M.
, and
Bhattacharya
,
S.
,
2021
, “
Behaviour of Buried Continuous Pipelines Crossing Strike-Slip Faults: Experimental and Numerical Study
,”
J. Nat. Gas. Sci. Eng
,
92
, p.
103980
.10.1016/j.jngse.2021.103980
32.
Halabian
,
A. M.
, and
Hokmabadi
,
T.
,
2018
, “
A New Hybrid Model for Rigorous Analysis of Buried Pipelines Under General Faulting Accounting for Material and Geometrical Non-Linearities With Focusing on Corrugated HDPE Pipelines
,”
Soil Dyn. Earthquake Eng.
,
115
, pp.
1
17
.10.1016/j.soildyn.2018.08.005
33.
Yang
,
H. Q.
,
Guo
,
E. D.
,
Zhao
,
Y.
,
Wang
,
Q.
, and
Liu
,
Z.
,
2012
, “
Study on Optimal Crossing Angle of Pipeline Passing Through Fault
,”
World Earthquake Eng.
,
28
(
4
), pp.
11
16
.
34.
Khaksar
,
R. Y.
,
Moradi
,
M.
, and
Ghalandarzadeh
,
A.
,
2018
, “
Response of Buried Oil and Gas Pipelines Subjected to Reverse Faulting: A Novel Centrifuge-Finite Element Approach
,”
Sci. Iran. Trans. A, Civ. Eng.
,
25
(
5
), pp.
2501
2516
.10.24200/sci.2017.4214
35.
Gawande
,
K.
,
Kiran
,
R.
, and
Cherukuri
,
H. P.
,
2019
, “
A Numerical Study of the Response of Buried Steel Pipelines Undergoing Strike-Slip Fault
,”
Eng. Failure Anal.
,
102
, pp.
203
218
.10.1016/j.engfailanal.2019.04.026
You do not currently have access to this content.