Abstract

Long-distance pipelines for the transport of oil and natural gas to onshore facilities are mainly fabricated by girth welding, which has been considered as a weak location for cracking. Pipeline rupture due to crack initiation and propagation in girth welding is one of the main issues of structural integrity for a stable supply of energy resources. The crack assessment should be performed by comparing the crack driving force with fracture toughness to determine the critical point of fracture. For this reason, accurate estimation of the crack driving force for pipelines with a crack in girth weld is highly required. This paper gives the newly developed J-integral and crack-tip opening displacement (CTOD) estimation in a strain-based scheme for pipelines with an internal surface crack in girth weld under axial displacement and internal pressure. For this purpose, parametric finite element analyses have been systematically carried out for a set of pipe thicknesses, crack sizes, strain hardening, overmatch, and internal pressure conditions. Using the proposed solutions, tensile strain capacities (TSCs) were quantified by performing crack assessment based on crack initiation and ductile instability and compared with TSCs from curved wide plate tests to confirm their validity.

References

1.
Feng
,
Q.
,
Li
,
R.
,
Nie
,
B.
,
Liu
,
S.
,
Zhao
,
L.
, and
Zhang
,
H.
,
2016
, “
Literature Review: Theory and Application of in-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection
,”
Sensors
,
17
(
12
), pp.
50
24
.10.3390/s17010050
2.
Budden
,
P. J.
,
2006
, “
Failure Assessment Diagram Methods for Strain-Based Fracture
,”
Eng. Fract. Mech.
,
73
(
5
), pp.
537
552
.10.1016/j.engfracmech.2005.09.008
3.
Law
,
M.
,
2007
, “
Review of Strain Based Analysis for Pipelines
,” Australian Nuclear Science and Technology Organization, Lucas Heights, NSW, Australia, Report No. ANSTO Report No.
R06M132
.https://www.scribd.com/doc/230361504/Review-of-Strain-Based-Analysis-for-Pipelines-Ref-PRCI
4.
Wang
,
X.
,
Kibey
,
S.
,
Tang
,
H.
,
Cheng
,
W.
,
Minnaar
,
K.
,
Macia
,
M. L.
,
Kan
,
W. C.
,
Ford
,
S. J.
, and
Newbury
,
B.
,
2011
, “
Strain-Based Design-Advances in Prediction Methods of Tensile Strain Capacity
,”
Int. J. Offshore Polar Eng.
,
21
(
1
), pp.
1
7
.10.17736/10535381
5.
Macia
,
M. L.
,
Kibey
,
S. A.
,
Arslan
,
H.
,
Bardi
,
F.
,
Ford
,
S. J.
,
Kan
,
W. C.
,
Cook
,
M. F.
, and
Newbury
,
B.
,
2010
, “
Approaches to Qualify Strain-Based Design Pipelines
,”
ASME
Paper No. IPC2010-31662.10.1115/IPC2010-31662
6.
Liu
,
B.
,
Liu
,
X. J.
, and
Zhang
,
H.
,
2009
, “
Strain-Based Design Criteria of Pipelines
,”
J. Loss Prev. Process Ind.
,
22
(
6
), pp.
884
888
.10.1016/j.jlp.2009.07.010
7.
Dinovitzer
,
A. S.
, and
Smith
,
R. J.
,
1998
, “
Strain-Based Pipeline Design Criteria Review
,”
ASME
Paper No. IPC1998-2089.10.1115/IPC1998-2089
8.
Sandvik
,
A.
,
Østby
,
E.
, and
Thaulow
,
C.
,
2006
, “
Probabilistic Fracture Assessment of Surface Cracked Pipes Using Strain-Based Approach
,”
Eng. Fract. Mech.
,
73
(
11
), pp.
1491
1509
.10.1016/j.engfracmech.2006.01.026
9.
Jayadevan
,
K. R.
,
Østby
,
E.
, and
Thaulow
,
C.
,
2004
, “
Fracture Response of Pipelines Subjected to Large Plastic Deformation Under Tension
,”
Int. J. Pressure Vessels Piping
,
81
(
9
), pp.
771
783
.10.1016/j.ijpvp.2004.04.005
10.
Nourpanah
,
N.
, and
Taheri
,
F.
,
2010
, “
Development of a Reference Strain Approach for Assessment of Fracture Response of Reeled Pipelines
,”
Eng. Fract. Mech.
,
77
(
12
), pp.
2337
2353
.10.1016/j.engfracmech.2010.04.030
11.
Zhang
,
Y. M.
,
Xiao
,
Z. M.
,
Zhang
,
W. G.
, and
Huang
,
Z. H.
,
2014
, “
Strain-Based CTOD Estimation Formulations for Fracture Assessment of Offshore Pipelines Subjected to Large Plastic Deformation
,”
Ocean Eng.
,
91
, pp.
64
72
.10.1016/j.oceaneng.2014.08.020
12.
Zhao
,
X.
,
Xu
,
L.
,
Jing
,
H.
,
Han
,
Y.
,
Zhao
,
L.
,
Cao
,
J.
,
Lv
,
Y.
, and
Song
,
Z.
,
2019
, “
A Modification of Reference Strain Approach for Thin-Walled Submarine Pipelines Under Large-Scale Plastic Strain and Internal Pressure
,”
Thin-Walled Struct.
,
140
, pp.
182
194
.10.1016/j.tws.2019.03.038
13.
Yi
,
D. K.
,
Xiao
,
Z. M.
,
Idapalapati
,
S.
, and
Kumar
,
S. B.
,
2012
, “
Fracture Analysis of Girth Welded Pipelines With 3D Embedded Cracks Subjected to Biaxial Loading Conditions
,”
Eng. Fract. Mech.
,
96
, pp.
570
587
.10.1016/j.engfracmech.2012.09.005
14.
Yi
,
D. K.
,
Sridhar
,
I.
,
Zhongmin
,
X.
, and
Kumar
,
S. B.
,
2012
, “
Fracture Capacity of Girth Welded Pipelines With 3D Surface Cracks Subjected to Biaxial Loading Conditions
,”
Int. J. Pressure Vessels Piping
,
92
, pp.
115
126
.10.1016/j.ijpvp.2011.10.019
15.
Zhang
,
Y. M.
,
Yi
,
D. K.
,
Xiao
,
Z. M.
,
Huang
,
Z. H.
, and
Kumar
,
S. B.
,
2013
, “
Elastic–Plastic Fracture Analyses for Pipeline Girth Welds With 3D Semi-Elliptical Surface Cracks Subjected to Large Plastic Bending
,”
Int. J. Pressure Vessels Piping
,
105
(105–106), pp.
90
102
.10.1016/j.ijpvp.2013.03.009
16.
Zhang
,
Y. M.
,
Xiao
,
Z. M.
, and
Zhang
,
W. G.
,
2013
, “
On 3-D Crack Problems in Offshore Pipeline With Large Plastic Deformation
,”
Theor. Appl. Fract. Mech.
,
67–68
, pp.
22
28
.10.1016/j.tafmec.2014.01.001
17.
Zhao
,
X.
,
Xu
,
L.
,
Jing
,
H.
,
Han
,
Y.
, and
Zhao
,
L.
,
2019
, “
A Strain-Based Fracture Assessment for Offshore Clad Pipes With Ultra Undermatched V Groove Weld Joints and Circumferential Surface Cracks Under Large-Scale Plastic Strain
,”
Eur. J. Mech. A/Solids
,
74
, pp.
403
416
.10.1016/j.euromechsol.2018.12.002
18.
Aguirre
,
F.
,
Kyriakides
,
S.
, and
Yun
,
H. D.
,
2004
, “
Bending of Steel Tubes With Lüders Bands
,”
Int. J. Plasticity
,
20
(
7
), pp.
1199
1225
.10.1016/j.ijplas.2003.05.001
19.
Kyriakides
,
S.
,
Ok
,
A.
, and
Corona
,
E.
,
2008
, “
Localization and Propagation of Curvature Under Pure Bending in Steel Tubes With Lüders Bands
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
3074
3087
.10.1016/j.ijsolstr.2008.01.013
20.
Liu
,
Y.
,
Kyriakides
,
S.
, and
Hallai
,
J. F.
,
2015
, “
Reeling of Pipe With Lüders Bands
,”
Int. J. Solids Struct.
,
72
, pp.
11
25
.10.1016/j.ijsolstr.2015.07.006
21.
Johnson
,
D. H.
,
2013
, “
Lüders Bands in RPV Steel
,” Ph.D. thesis,
Cranfield University
,
UK
, pp.
1
243
.
22.
Wang
,
L.
,
Wu
,
G.
,
Wang
,
B.
, and
Pisarski
,
H.
,
2019
, “
Fracture Response of X65 Pipes Containing Circumferential Flaws in the Presence of Lüders Plateau
,”
Int. J. Solids Struct.
,
156–157
, pp.
29
48
.10.1016/j.ijsolstr.2018.07.027
23.
Jang
,
Y. Y.
,
Kang
,
J. Y.
,
Huh
,
N. S.
,
Kim
,
I. J.
, and
Kim
,
Y. P.
,
2020
, “
Strain-Based CTOD and J-Integral Estimations for Pipelines With a Surface Crack Under Large Plastic Strain and Internal Pressure
,”
ASME J. Pressure Vessel Technol.
,
142
(
5
), p.
051503
.10.1115/1.4046979
24.
Wang
,
Y. Y.
,
Liu
,
M.
,
Song
,
Y.
,
Stephens
,
M.
,
Petersen
,
R.
, and
Gordon
,
R.
,
2011
, “
Second Generation Models for Strain-Based Design
,” Pipeline Research Council International, Chantilly, VA, Contract PR-ABD-1–Project 2 Final Report.https://rosap.ntl.bts.gov/view/dot/34533/dot_34533_DS1.pdf?
25.
Tang
,
H.
,
Fairchild
,
D.
,
Panico
,
M.
,
Crapps
,
J.
, and
Cheng
,
W.
,
2014
, “
Strain Capacity Prediction of Strain-Based Pipelines
,”
ASME
Paper No. IPC2014-33749.10.1115/IPC2014-33749
26.
Dassault Systems
,
2018
, “
ABAQUS Version 6.18, User's Manual
,”
Dassault Systems
, Velizy-Villacoublay, France.
27.
Widgery
,
D. J.
,
2000
, “
Welding High Strength Steel Pipelines—A Consumable Manufacturer's View
,”
Proceedings of the International Conference on Pipeline Technology
, Vol.
2
, Brugge, Belgium, May 21–24, pp.
499
508
.
28.
Liu
,
M.
,
Wang
,
Y. Y.
,
Horsley
,
D.
, and
Nanney
,
S.
,
2012
, “
Multi-Tier Tensile Strain Models for Strain-Based Design: Part 3—Model Evaluation Against Experimental Data
,”
ASME
Paper No. IPC2012-90660
. 10.1115/IPC2012-90660
29.
Kang
,
J. Y.
,
Jang
,
Y. Y.
,
Huh
,
N. S.
,
Kim
,
K. S.
, and
Cho
,
W. Y.
,
2018
, “
Limit Strains of X70 Pipes With a Semi-Elliptical Crack Based on Initiation and Ductile Tearing Criteria
,”
ASME
Paper No. PVP2018-84641.10.1115/PVP2018-84641
30.
Collberg
,
L.
,
1999
, “
Introduction to the Update of DNV'96, DNV OS F101; Submarine Pipeline Systems
,” Proceedings of the International Society of Offshore and Polar Engineers, Brest, France, May 30–June 4, Paper No.
ISOPE-I-99-134
.https://www.semanticscholar.org/paper/Introduction-to-the-Update-of-DNV%2796%2C-DNVOS-F101%3B-Collberg/a47a8fd533ddf1d0dacd25cd346e9b9e1ee3a1c0
31.
Soret
,
C.
,
Madi
,
Y.
,
Besson
,
J.
, and
Gaffard
,
V.
,
2015
, “
Use of the SENT Specimen in Pipeline Design
,”
Proceedings of the Joint Technical Meeting—European Pipeline Research Group
, Paris, France, May 3–8, pp.
1
34
.https://hal-minesparistech.archives-ouvertes.fr/hal-01183303/document
32.
Abdulhameed
,
D.
,
Cakiroglu
,
C.
,
Lin
,
M.
,
Cheng
,
R.
,
Nychka
,
J.
,
Sen
,
M.
, and
Adeeb
,
S.
,
2016
, “
The Effect of Internal Pressure on the Tensile Strain Capacity of X52 Pipelines With Circumferential Flaws
,”
ASME J. Pressure Vessel Technol.
,
138
(
6
), p.
061701
.10.1115/1.4033436
33.
Pussegoda
,
N.
,
Tiku
,
S.
, and
Tyson
,
B.
,
2014
, “
Test Protocol: Measurement of Crack Tip Opening Displacement and J-Fracture Resistance Curve Using Single Edge Notched Tension Specimens
,” BMT Fleet Technology, Kanata, ON, Canada, Doc. No. 30166–00.
34.
James
,
M. A.
, and
Newman
, and
J. C.
, Jr
,
2003
, “
The Effect of Crack Tunneling on Crack Growth: Experiments and CTOA Analyses
,”
Eng. Fract. Mech.
,
70
(
3–4
), pp.
457
468
.10.1016/S0013-7944(02)00131-5
35.
Denys
,
R.
, and
Lefevre
,
A.
,
2009
, “
Ugent Guidelines for Curved Wide Plate Testing
,”
Proceedings of the International Conference on Pipeline Technology
, Ostend, Belgium, Oct. 12–15, pp.
1
21
.http://hdl.handle.net/1854/LU-764092
36.
Verstraete
,
M. A.
,
De Waele
,
W.
,
Denys
,
R. M.
,
Van Minnebruggen
,
K.
, and
Hertelé
,
S.
,
2014
, “
Constraint Analysis of Defects in Strength Mismatched Girth Welds of (Pressurized) Pipe and Curved Wide Plate Tensile Test Specimens
,”
Eng. Fract. Mech.
,
131
, pp.
128
141
.10.1016/j.engfracmech.2014.07.018
37.
Fairchild
,
D. P.
,
Cheng
,
W.
,
Ford
,
S. J.
,
Minnaar
,
K.
,
Biery
,
N. E.
,
Kumar
,
A.
, and
Nissley
,
N. E.
,
2007
, “
Recent Advances in Curved Wide Plate Testing and Implications for Strain-Based Design
,” Proceedings of the International Offshore and Polar Engineering Conference, Lisbon, Portugal, July 1–6, Paper No.
ISOPE-I-07-532
.https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE07/All-ISOPE07/ISOPE-I-07-532/10629
38.
Zhu
,
X. K.
,
Zelenak
,
P.
, and
McGaughy
,
T.
,
2017
, “
Comparative Study of CTOD-Resistance Curve Test Methods for SENT Specimens
,”
Eng. Fract. Mech.
,
172
, pp.
17
38
.10.1016/j.engfracmech.2017.01.007
You do not currently have access to this content.