Abstract

Post-welding heat treatment (PWHT) is a key manufacturing procedure of thick-walled pressure vessel. Local PWHT is thereby needed due to large size of pressure vessels. Different from module furnace heating and resistance heating, electromagnetic induction heating is a new heating technology with the merits of green and high heating efficiency. However, the axial temperature gradient is inevitably generated. Excessive axial temperature gradient can reduce the effectiveness of heat treatment and even result in material scrap. In order to reduce axial temperature gradient in thick wall during local heat treatment of pressure vessels with electromagnetic induction, the electromagnetic–thermal multifield coupling simulation was carried out on the thick-walled pressure vessel cylinder in this paper. The distribution of induced magnetic field, eddy current field, and temperature field in the electromagnetic induction heating process was explored in detail. The results show the influence of the number of cable turns, the width of outer wall insulation band, spacing between turns, and the current frequency on the axial temperature distribution. The increase of cable turns causes an increase in both heating rate and temperature difference. Larger insulation width of the outer wall and bigger spacing between turns can make the axial temperature higher and the uniformity better. Above 1 kHz, the lower frequency causes an improvement in the temperature and its uniformity. The recommended induction heating process parameters required by the cylinder were determined: 16 turns, 1460 mm in outer insulation width, 32 mm in spacing width, and 2 kHz current frequency.

References

1.
Ul Islam
,
S. S.
,
Khan
,
N. Z.
, and
Siddiquee
,
A. N.
,
2024
, “
12.04—Review of Heat Treatment of Welded Sheet Metals During Past 15 Years
,”
Comprehensive Materials Processing
, 2nd ed.,
S.
Hashmi
, ed.,
Elsevier
, Oxford, UK, pp.
41
56
.
2.
Mühl
,
F.
,
Klug
,
M.
,
Dietrich
,
S.
, and
Schulze
,
V.
,
2020
, “
Improving the Inner Surface State of Thick-Walled Tubes by Heat Treatments With Internal Quenching Considering a Simulation Based Optimization
,”
Processes
,
8
(
10
), p.
1303
.10.3390/pr8101303
3.
Wu
,
H.
,
Shan
,
Z.
,
Woo
,
W.
,
Chae
,
H.
, and
Kim
,
D.-K.
,
2024
, “
Residual Stress Relief Strategy in Thick Steel Weldments Via Local Induction Heat Treatment: Simulation and Neutron Diffraction Experiment
,”
Mater. Sci. Eng.: A
,
902
, p.
146612
.10.1016/j.msea.2024.146612
4.
Hirohata
,
M.
,
Chang
,
K.-H.
,
Suzuki
,
T.
, and
Konishi
,
H.
,
2024
, “
Local Heating for Reducing Residual Stress and Fatigue-Performance Improvement of Welded Joints
,”
J. Constr. Steel Res.
,
215
, p.
108544
.10.1016/j.jcsr.2024.108544
5.
Luo
,
Z.
,
Liu
,
D.
, and
Liu
,
X.
,
2022
, “
A Two-Stage Optimization Scheduling Method for Cogeneration Systems Considering Thermal Inertia
,”
Electr. Power Eng. Technol.
,
41
(
5
), pp.
58
66
(in Chinese).
6.
Zhengnan
,
C.
,
2023
, “
Reflection on the Application of Metal Material Heat Treatment Technology in Mechanical Manufacturing
,”
Metall. Mater.
,
43
(
1
), pp.
154
156
(in Chinese).
7.
Chudjuarjeen
,
S.
, and
Chakkuchan
,
P.
,
2023
, “
A Comparative Study of Induction Heater and Heating on Hot Tensile Test for SKD11 Tool Steel
,”
Mater. Today: Proc.
, epub.10.1016/j.matpr.2023.09.171
8.
Zhang
,
Y.
,
Yan
,
H.
,
Zhu
,
P.
, and
Zheng
,
Z.
,
2024
, “
Comparison of the Effects of Induction Heating Composite Shot Peening and Conventional Shot Peening on Residual Stress, Microhardness, and Microstructure of 20CrMnTi Gear Steel
,”
Surf. Coat. Technol.
,
485
, p.
130887
.10.1016/j.surfcoat.2024.130887
9.
Wang
,
Y.
,
Hu
,
X.
,
Jiang
,
M.
,
Wang
,
J.
,
Wei
,
M.
, and
Zhang
,
L.
,
2021
, “
Temperature Field Characterization and Optimization of Temperature Field Distribution in Pipe Lining Process Based on Electromagnetic Induction Heating System
,”
Case Stud. Therm. Eng.
,
28
, p.
101609
.10.1016/j.csite.2021.101609
10.
Citir
,
A. G.
,
Toros
,
S.
, and
Ozturk
,
F.
,
2024
, “
Experimental and Numerical Investigations of Induction Heating for Ti-6Al-4V Sheets and Epoxy/Carbon Fiber Composite Laminates
,”
J. Eng. Res.
,
12
(
2
), pp.
256
265
.10.1016/j.jer.2023.10.009
11.
Wen
,
T.
,
Qin
,
X.
,
Lv
,
Z.
,
Yang
,
P.
,
Chen
,
W.
,
Xie
,
J.
, and
Liu
,
F.
,
2024
, “
Numerical Simulation Study on Integral Induction Heating of Backup Roll
,”
Case Stud. Therm. Eng.
,
57
, p.
104338
.10.1016/j.csite.2024.104338
12.
Pandey
,
C.
,
Saini
,
N.
,
Mohan Mahapatra
,
M.
, and
Kumar
,
P.
,
2017
, “
Study of the Fracture Surface Morphology of Impact and Tensile Tested Cast and Forged (C&F) Grade 91 Steel at Room Temperature for Different Heat Treatment Regimes
,”
Eng. Failure Anal.
,
71
, pp.
131
147
.10.1016/j.engfailanal.2016.06.012
13.
Pandey
,
C.
,
Giri
,
A.
, and
Mahapatra
,
M. M.
,
2016
, “
Effect of Normalizing Temperature on Microstructural Stability and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel
,”
Mater. Sci. Eng. A
,
657
, pp.
173
184
.10.1016/j.msea.2016.01.066
14.
Pandey
,
C.
,
Giri
,
A.
, and
Mahapatra
,
M. M.
,
2016
, “
Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties
,”
Mater. Sci. Eng. A
,
664
, pp.
58
74
.10.1016/j.msea.2016.03.132
15.
de Klerk
,
J. V.
,
James
,
M. N.
,
Hattingh
,
D. G.
, and
Bernard
,
D.
,
2023
, “
A Comparison of Induction Heating and Ceramic Pads for Localised Post-Weld Heat Treatment of Friction Taper Hydro-Pillar Welds in Thick-Walled Steam Pipe
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105082
.10.1016/j.ijpvp.2023.105082
16.
Li
,
X.
,
Li
,
M.
,
Yang
,
J.
,
Zhao
,
P.
, and
Li
,
B.
,
2019
, “
Numerical Simulation on the Temperature Field of Induction Heating for the Inner Wall Cladding in a Cylinder During the Dehydrogenation Process
,”
Mech. Manuf. Abstr. (Weld.)
,
4
, pp.
15
23
(in Chinese).
17.
Jin
,
Q.
,
Jiang
,
W.
,
Gu
,
W.
,
Wang
,
J.
,
Li
,
G.
,
Pan
,
X.
,
Song
,
M.
,
Zhang
,
K.
,
Wu
,
A.
, and
Tu
,
S.-T.
,
2021
, “
A Primary Plus Secondary Local PWHT Method for Mitigating Weld Residual Stresses in Pressure Vessels
,”
Int. J. Pressure Vessels Piping
,
192
, p.
104431
.10.1016/j.ijpvp.2021.104431
18.
Teixeira Júnior
,
M.
,
Zilio
,
G.
,
Mortean
,
M. V. V.
,
de Paiva
,
K. V.
, and
Oliveira
,
J. L. G.
,
2023
, “
Experimental and Numerical Analysis of Transient Thermal Stresses on Thick-Walled Cylinder
,”
Int. J. Pressure Vessels Piping
,
202
, p.
104884
.10.1016/j.ijpvp.2023.104884
19.
Yang
,
H.
,
Zeng
,
X.
, and
Wu
,
X.
,
2023
, “
An Approach to Solving Maxwell’s Equations in Time Domain
,”
J. Math. Anal. Appl.
,
518
(
1
), p.
126678
.10.1016/j.jmaa.2022.126678
20.
Želi
,
V.
, and
Zorica
,
D.
,
2018
, “
Analytical and Numerical Treatment of the Heat Conduction Equation Obtained Via Time-Fractional Distributed-Order Heat Conduction Law
,”
Phys. A: Stat. Mech. Appl.
,
492
, pp.
2316
2335
.10.1016/j.physa.2017.11.150
21.
Zhang
,
G.
,
Jiang
,
Z.
,
Chen
,
J.
,
Chen
,
J.
, and
Yang
,
B.
,
2022
, “
Study of the Convection Heat Transfer Law and Temperature Prediction of the Duct in High-Temperature Tunnels
,”
Case Stud. Therm. Eng.
,
36
, p.
102208
.10.1016/j.csite.2022.102208
22.
Hu
,
Y.
,
Jasim
,
D. J.
,
Alizadeh
,
A.
,
Rahmani
,
A.
,
Al-Shati
,
A. S.
,
Zarringhalam
,
M.
,
Shamsborhan
,
M.
, and
Nasajpour-Esfahani
,
N.
,
2023
, “
Simulation of Heat Transfer in a Nanoparticle Enhanced Phase Change Material to Design Battery Thermal Management Systems: A Lattice Boltzmann Method Study
,”
J. Taiwan Inst. Chem. Eng.
,
152
, p.
105137
.10.1016/j.jtice.2023.105137
23.
Peng
,
W.
,
Jiang
,
W.
,
Jin
,
Q.
,
Wan
,
Y.
,
Luo
,
Y.
,
Ren
,
L.
,
Zhang
,
K.
, and
Tu
,
S.-T.
,
2021
, “
Reduction of Welding Residual Stress in the Head-Cylinder Joint of a Large Rectifying Tower by Finite Element Method and Experimental Study
,”
Int. J. Pressure Vessels Piping
,
191
, p.
104311
.10.1016/j.ijpvp.2021.104311
24.
Hou
,
L.
,
Tai
,
H.
,
Liu
,
Y.
,
Zhu
,
Y.
,
Zhao
,
X.
, and
Yang
,
L.
,
2024
, “
Thermal Design of Insulation on the Outside of the Cavity for a Trombe Wall With Phase Change Materials
,”
Energy Build.
,
311
, p.
114168
.10.1016/j.enbuild.2024.114168
25.
Deng
,
J.
,
Zhang
,
J.
,
Zhang
,
Q.
, and
Xu
,
S.
,
2021
, “
Effects of Induction Coil Parameters of Plasma Torch on the Distribution of Temperature and Flow Fields
,”
Alexandria Eng. J.
,
60
(
1
), pp.
501
510
.10.1016/j.aej.2020.09.022
26.
Wang
,
Z.
,
Zhao
,
X.
,
Han
,
Z.
,
Luo
,
L.
,
Xiang
,
J.
,
Zheng
,
S.
, and
Liu
,
G.
, et al.,
2021
, “
Advanced Big-Data/Machine-Learning Techniques for Optimization and Performance Enhancement of the Heat Pipe Technology—A Review and Prospective Study
,”
Appl. Energy
,
294
, p.
116969
.10.1016/j.apenergy.2021.116969
You do not currently have access to this content.