This paper proposes a solution procedure to formulate an approximate joint probability density function (PDF) of a Duffing-type energy harvester system under Gaussian white noise. The joint PDF solution of displacement, velocity, and an electrical variable is governed by the Fokker-Planck (FP) equation. First, the FP equation is reduced to a lower-dimensional FP equation only about displacement and velocity by a state-space-split (SSS) method. The stationary joint PDF of displacement and velocity can be solved exactly. Then, the joint PDF of displacement, velocity, and the electrical variable can be approximated by the product of the obtained exact PDF and the conditional Gaussian PDF of the electrical variable. A parametric study is further conducted to show the effectiveness of the proposed solution procedure. The study considers weak nonlinearity, strong nonlinearity, high excitation level, and a bistable oscillator. Comparison with the simulated results shows that the proposed solution procedure is effective in obtaining the joint PDF of the energy harvester system in the examined examples.

References

1.
Ali
,
S. F.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
J. Appl. Mech.
,
80
(
4
), p.
041004
.10.1115/1.4007967
2.
Green
,
P. L.
,
Worden
,
K.
,
Atallah
,
K.
, and
Sims
,
N. D.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimisation of a Mono-Stable Energy Harvester under White Gaussian Excitations
,”
J. Sound Vib.
,
331
(
20
), pp.
4504
4517
.10.1016/j.jsv.2012.04.035
3.
Khovanova
,
N. A.
, and
Khovanov
,
I. A.
,
2011
, “
The Role of Excitations Statistic and Nonlinearity in Energy Harvesting from Random Impulsive Excitations
,”
Appl. Phys. Lett.
,
99
(
14
), p.
144101
.10.1063/1.3647556
4.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
5.
Green
,
P. L.
,
Worden
,
K.
, and
Sims
,
N. D.
,
2013
, “
On the Identification and Modelling of Friction in a Randomly Excited Energy Harvester
,”
J. Sound Vib.
,
332
(
19
), pp.
4696
4708
.10.1016/j.jsv.2013.04.024
6.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.10.1007/s11071-012-0327-0
7.
Twiefel
,
J.
, and
Westermann
,
H.
,
2013
, “
Survey on Broadband Techniques for Vibration Energy Harvesting
,”
J. Intel. Mater. Syst. Struct.
,
24
(
11
), pp.
1291
1302
.10.1177/1045389X13476149
8.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p.
015035
.10.1088/0964-1726/17/01/015035
9.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters for Energy Scavenging
,”
J. Sound Vib.
,
292
(
3–5
), pp.
987
998
.10.1016/j.jsv.2005.08.018
10.
Shahruz
,
S. M.
,
2006
, “
Limits of Performance of Mechanical Band-Pass Filters Used in Energy Harvesting
,”
J. Sound Vib.
,
293
(
1–2
), pp.
449
461
.10.1016/j.jsv.2005.09.022
11.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting from the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.10.1016/j.jsv.2008.06.011
12.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.10.1103/PhysRevLett.102.080601
13.
Gammaitoni
,
L.
,
Neri
,
I.
, and
Vocca
,
H.
,
2009
, “
Nonlinear Oscillators for Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
16
), p.
164102
.10.1063/1.3120279
14.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting from Vibrations with a Nonlinear Oscillator
,”
J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
15.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester with a Bistable Potential Well
,”
J. Sound Vib.
,
329
(
9
), pp.
1215
1226
.10.1016/j.jsv.2009.11.034
16.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2011
, “
Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting
,”
J. Vib. Acoust.
,
133
(
1
), p.
011001
.10.1115/1.4002782
17.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
J. Appl. Mech.
,
80
(
6
), p.
061013
.10.1115/1.4023961
18.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2013
, “
Response of Duffing-Type Harvesters to Band-Limited Noise
,”
J. Sound Vib.
,
332
(
25
), pp.
6755
6767
.10.1016/j.jsv.2013.07.022
19.
Kovacic
,
I.
, and
Brennan
,
M. J.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and their Behaviour
,
John Wiley & Sons
,
West Sussex, UK
.
20.
Feng
,
J. Q.
,
Xu
,
W.
, and
Wang
,
R.
,
2008
, “
Stochastic Responses of Vibro-Impact Duffing Oscillator Excited by Additive Gaussian Noise
,”
J. Sound Vib.
,
309
(
3–5
), pp.
730
738
.10.1016/j.jsv.2007.07.070
21.
Feng
,
J. Q.
,
Xu
,
W.
,
Rong
,
H. W.
, and
Wang
,
R.
,
2009
, “
Stochastic Responses of Duffing-Van der Pol Vibro-Impact System Under Additive and Multiplicative Random Excitations
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
51
57
.10.1016/j.ijnonlinmec.2008.08.013
22.
Li
,
C.
,
Xu
,
W.
,
Feng
,
J. Q.
, and
Wang
,
L.
,
2013
, “
Response Probability Density Functions of Duffing-Van der Pol Vibro-Impact System Under Correlated Gaussian White Noise Excitations
,”
Physica A
,
392
, pp.
1269
1279
.10.1016/j.physa.2012.11.053
23.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
.10.1088/0964-1726/21/3/035021
24.
Martens
,
W.
,
von Wagner
,
U.
, and
Litak
,
G.
,
2013
, “
Stationary Response of Nonlinear Magneto-Piezoelectric Energy Harvester Systems under Stochastic Excitation
,”
Eur. Phys. J. Special Topics
,
222
, pp.
1665
1673
.10.1140/epjst/e2013-01953-5
25.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.10.1016/j.jsv.2010.04.002
26.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
, p.
214103
.10.1063/1.3436553
27.
Kumar
,
P.
,
Narayanan
,
S.
,
Adhikari
,
S.
, and
Friswell
,
M. I.
,
2014
, “
Fokker-Planck Equation Analysis of Randomly Excited Nonlinear Energy Harvester
,”
J. Sound Vib.
,
333
(
7
), pp.
2040
2053
.10.1016/j.jsv.2013.11.011
28.
Er
,
G. K.
,
2011
, “
Methodology for the Solutions of Some Reduced Fokker-Planck Equations in High Dimensions
,”
Ann. Phys. (Berlin)
,
523
(
3
), pp.
247
258
.10.1002/andp.v523.3
29.
Zhu
,
H. T.
,
2012
, “
Probabilistic Solution of Some Multi-Degree-of-Freedom Nonlinear Systems under External Independent Poisson White Noises
,”
J. Acoust. Soc. Am.
,
131
(
6
), pp.
4550
4557
.
30.
Er
,
G. K.
,
1998
, “
An Improved Closure Method for Analysis of Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
,
17
(
3
), pp.
285
297
.10.1023/A:1008346204836
31.
Zhu
,
H. T.
,
Er
,
G. K.
,
Iu
,
V. P.
, and
Kou
,
K. P.
,
2011
, “
Probabilistic Solution of Nonlinear Oscillators Excited by Combined Gaussian and Poisson White Noises
,”
J. Sound Vib.
,
330
(
12
), pp.
2900
2909
.10.1016/j.jsv.2011.01.005
32.
Zhu
,
H. T.
,
2014
, “
Probabilistic Solution of Vibro-Impact Systems under Additive Gaussian White Noise
,”
J. Vib. Acoust.
,
136
(
3
), p.
031018
.10.1115/1.4027211
33.
Caughey
,
T. K.
,
1963
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1706
1711
.
34.
Spanos
,
P. D.
,
1981
, “
Stochastic Linearization in Structural Dynamics
,”
Appl. Mech. Rev.
,
34
(
1
), pp.
1
8
.
35.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications Inc.
,
Mineola, NY
.
36.
Socha
,
L.
,
2008
,
Linearization Methods for Stochastic Dynamic Systems
,
Springer
,
Berlin, Germany
.
You do not currently have access to this content.