Abstract

This study analyzes the risks in ship traffic services management using the functional resonance analysis method (FRAM), a novel approach that focuses on identifying interactions leading to performance variability rather than errors. The research area is the Turkish Straits vessel traffic service management (VTSM) region, known for frequent risky ship passages. The goal is to ensure safe VTSM, minimize the negative impacts on people, goods, and the environment. The daily routine functions of the VTSM, determined through consultations with vessel traffic operators (VTOs), are explained by following FRAM analysis principles. Qualitative methods, aligned with expert opinions, are used to examine potential performance variabilities and hazard factors. The resulting risk situation for each function is categorized by criticality on a color-coded scale. Solution proposals are provided to manage critical function variability, enhancing the VTSM system's responsiveness and adaptability.

References

1.
IMO
, 1985, “Vessel Traffic Services,” IMO, London, UK, accessed Jan., 2023, https://www.imo.org/en/OurWork/Safety/Pages/VesselTrafficServices.aspx
2.
Kwang
,
A.
,
2011
, “
A Study on Prospects for the Evolution of Maritime Traffic Management Systems Taking Into Account e-Navigation
,”
MS dissertations
, World Maritime University, Malmo, Sweden.
3.
Essiz
,
B.
, and
Dagkiran
,
B.
,
2017
, “
Accidental Risk Analyses of the Istanbul and Çanakkale Straits
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
95
(
4
), p.
042042
.10.1088/1755-1315/95/4/042042
4.
Oral
,
N.
, and
Ozturk
,
B.
,
2006
,
The Turkish Straits, Maritime Safety, Legal and Environmental Aspects
,
Turkish Marine Research Foundation
,
Istanbul, Turkey
.
5.
IALA Standard
,
2023
, “
S1040-Vessel Traffic Services, Edition 1.0
,” IALA,
St Germain en Laye
,
France
, accessed June, 2023, https://www.iala-aism.org/product/s1040
6.
Praetorius
,
G.
,
2014
, “
Vessel Traffic Service (VTS): A Maritime Information Service or Traffic Control System?: Understanding Everyday Performance and Resilience in a Socio-Technical System Under Change
,” Ph.D. thesis,
Chalmers Tekniska Högskola
,
Gothenburg, Sweden
.
7.
Kupiec
,
T.
,
Wojtowicz
,
D.
, and
Olejniczak
,
K.
,
2023
, “
Structures and Functions of Complex Evaluation Systems: Comparison of Six Central and Eastern European Countries
,”
Int. Rev. Adm. Sci.
,
89
(
1
), pp.
202
220
.10.1177/00208523211026964
8.
Le Coze
,
J. C.
,
2022
, “
The ‘New View’ of Human Error. Origins, Ambiguities, Successes and Critiques
,”
Saf. Sci.
,
154
, p.
105853
.10.1016/j.ssci.2022.105853
9.
Patriarca
,
R.
,
Bergström
,
J.
,
Di Gravio
,
G.
, and
Costantino
,
F.
,
2018
, “
Resilience Engineering: Current Status of the Research and Future Challenges
,”
Saf. Sci.
,
102
, pp.
79
100
.10.1016/j.ssci.2017.10.005
10.
Hollnagel
,
E.
,
2012
,
FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems
,
Ashgate, Farnham, UK
.
11.
Hale
,
A. R.
, and
Hovden
,
J.
,
1998
, “
Management and Culture: The Third Age of Safety. A Review of Approaches to Organizational Aspects of Safety, Health and Environment
,”
Occupational Injury: Risk, Prevention and Intervention
,
A. R.
Hale
, and
J.
Hovden
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
129
165
.
12.
Diop
,
I.
,
Abdul-Nour
,
G.
, and
Komljenovic
,
D.
,
2022
, “
The Functional Resonance Analysis Method: A Performance Appraisal Tool for Risk Assessment and Accident Investigation in Complex and Dynamic Socio-Technical Systems
,”
American Journal of Industrial and Business Management
,
12
, pp.
195
230
.10.4236/ajibm.2022.122013
13.
Hollnagel
,
E.
,
2014
,
Safety–I and Safety–II: The Past and Future of Safety Management
, 1st ed.,
CRC Press
, Ashgate Publishing Company, London, UK.
14.
Sellberg
,
M. M.
,
Quinlan
,
A.
,
Preiser
,
R.
,
Malmborg
,
K.
, and
Peterson
,
G. D.
,
2021
, “
Engaging With Complexity in Resilience Practice
,”
Ecol. Soc.
,
26
(
3
), p.
8
.10.5751/ES-12311-260308
15.
Clarke
,
L. J.
,
Macfarlane
,
G. J.
,
Penesis
,
I.
,
Duffy
,
J. T.
,
Matsubara
,
S.
, and
Ballantyne
,
R. J.
,
2017
, “
A Risk Assessment of a Novel Bulk Cargo Ship-to-Ship Transfer Operation Using the Functional Resonance Analysis Method
,”
ASME
Paper No. OMAE2017-61535. 10.1115/OMAE2017-61535
16.
Hollnagel
,
E.
,
2009
, The ETTO Principle: Efficiency-Thoroughness Trade-Off. Why Things That Go Right Sometimes Go Wrong, CRC Press, Taylor & Francis Group, Boca Raton, FL, pp.
153
154
.
17.
Praetorius
,
G.
,
Lundh
,
M.
, and
Lützhöft
,
M.
,
2011
, “
Learning From the Past for Pro-Activity—A Re-Analysis of the Accident of the M/V Herald of Free Enterprise
,”
Proceedings of the 4th Resilience Engineering Symposium
, Sophia Antipolis, France, pp.
217
226
.
18.
Yang
,
W.
,
Enrico
,
Z.
,
Shanshan
,
F.
,
Di
,
Z.
, and
Xinping
,
Y.
,
2016
, “
Some Reflections on Pre- and Post-Accident Analysis for Water Transport: A Case Study of the Eastern Star Accident
,”
European Safety and Reliability Conference-ESREL
,Glasgow, UK, pp.
127
133
.
19.
Dohyung
,
K.
,
2017
, “
Comparison of Systemic Accident Investigation Techniques Based on the Sewol Ferry Capsizing
,”
J. Ergon. Soc. Korea
,
36
(
5
), pp.
485
498
.10.5143/JESK.2017.36.5.485
20.
Smith
,
D.
,
Veitch
,
B.
,
Khan
,
F.
, and
Taylor
,
R.
,
2018
, “
Using the FRAM to Understand Arctic Ship Navigation: Assessing Work Processes During the Exxon Valdez Grounding
,”
Int. J. Mar. Navig. Saf. Sea Transp.
,
12
(
3
), pp. 447–457.10.12716/1001.12.03.03
21.
Çıg
,
N.
,
2019
, “
Analysis of the Root Causes of Colliding Ships and Accident Analysis
,” Master thesis,
ITU
,
Institute of Science, Sariyer
. Istanbul, Turkey.
22.
Salihoglu
,
E.
, and
Beşikçi
,
E. B.
,
2021
, “
The Use of Functional Resonance Analysis Method (FRAM) in a Maritime Accident: A Case Study of Prestige
,”
Ocean Eng.
,
219
, p.
108223
.10.1016/j.oceaneng.2020.108223
23.
Rammos
,
A. K.
,
2019
, “
Application of the Functional Resonance Analysis Method (FRAM) on Fires Onboard Ship
,” Undergraduate Engineering thesis, NTUA, Athens, Greece.
24.
Smith
,
D.
,
Veitch
,
B.
,
Khan
,
F.
, and
Taylor
,
R.
,
2018
, “Using FRAM to Evaluate Ship Designs and Regulations,” Marine Design XIII, Vol. 2, Taylor and Francis Group, London, UK, pp.
677
684
.
25.
Mentes
,
A.
, and
Turan
,
O.
,
2019
, “
A New Resilient Risk Management Model for Offshore Wind Turbine Maintenance
,”
Saf. Sci.
,
119
, pp.
360
374
.10.1016/j.ssci.2018.06.022
26.
Praetorius
,
G.
,
Hollnagel
,
E.
, and
Dahlman
,
J.
,
2015
, “
Modelling Vessel Traffic Service to Understand Resilience in Everyday Operations
,”
Reliab. Eng. Syst. Saf.
,
141
, pp.
10
21
.10.1016/j.ress.2015.03.020
27.
Costa
,
N. A.
,
Lundh
,
M.
, and
MacKinnon
,
S. N.
,
2018
, “
Non-Technical Communication Factors at the Vessel Traffic Services
,”
Cognit., Technol. Work
,
20
(
1
), pp.
63
72
.10.1007/s10111-017-0448-9
28.
Brödje
,
A.
,
Lundh
,
M.
,
Jenvald
,
J.
, and
Dahlman
,
J.
,
2013
, “
Exploring Nontechnical Miscommunication in Vessel Traffic Service Operation
,”
Cognit., Technol. Work
,
15
(
3
), pp.
347
357
.10.1007/s10111-012-0236-5
29.
de Vries
,
L.
,
2017
, “
Work as Done? Understanding the Practice of Sociotechnical Work in the Maritime Domain
,” J.
Cognit. Eng. Decis. Making
,
11
(
3
), pp.
270
295
.10.1177/1555343417707664
30.
Crestelo
,
M.
,
Roca
,
G. F.
,
Suardíaz Muro
,
J.
, and
García Maza
,
J. A.
,
2022
, “
Relationship Between Human Factors and a Safe Performance of Vessel Traffic Service Operators: A Systematic Qualitative-Based Review in Maritime Safety
,”
Saf. Sci.
,
155
, p.
105892
.10.1016/j.ssci.2022.105892
31.
Kum
,
S.
, and
Furusho
,
M.
, 2008, “
Investigation on the Factors of VTS Operator's Mental Workload: Case of Japanese Operators
,”
Proceedings of the Asia Navigation Conference
,
Shanghai, China
, Nov. 13–15, pp.
242
255
.
32.
Yoo
,
S.-L.
, and
Kim
,
K.-I.
,
2021
, “
Optimal Staffing for Vessel Traffic Service Operators: A Case Study of Yeosu VTS
,”
Sensors
,
21
(
23
), p.
8004
.10.3390/s21238004
33.
Yunlong
,
G.
,
Yongxing
,
J.
,
Shenping
,
H.
,
Zaili
,
Y.
,
Yongtao
,
X.
, and
Bing
,
H.
,
2023
, “
Risk Evolution Analysis of Ship Pilotage Operation by an Integrated Model of FRAM and DBN
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108850
.10.1016/j.ress.2022.108850
34.
Patriarca
,
R.
,
Di Gravio
,
G.
, and
Costantino
,
F.
,
2017
, “
A Monte Carlo Evolution of the Functional Resonance Analysis Method (FRAM) to Assess Performance Variability in Complex Systems
,”
Saf. Sci.
,
91
, pp.
49
60
.10.1016/j.ssci.2016.07.016
35.
Kaya
,
G. K.
, and
Hocaoglu
,
M. F.
,
2020
, “
Semi-Quantitative Application to the Functional Resonance Analysis Method for Supporting Safety Management in a Complex Health-Care Process
,”
Reliab. Eng. Syst. Saf.
,
202
, p.
106970
.10.1016/j.ress.2020.106970
36.
Kim
,
Y. C.
, and
Yoon
,
W. C.
,
2021
, “
Quantitative Representation of the Functional Resonance Analysis Method for Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
214
, p.
107745
.10.1016/j.ress.2021.107745
37.
Patriarca
,
R.
,
Di Gravio
,
G.
,
Woltjer
,
R.
,
Costantino
,
F.
,
Praetorius
,
G.
,
Ferreira
,
P.
, and
Hollnagel
,
E.
,
2020
, “
Framing the FRAM: A Literature Review on the Functional Resonance Analysis Method
,”
Saf. Sci.
,
129
, p.
104827
.10.1016/j.ssci.2020.104827
38.
Tian
,
W.
, and
Caponecchia
,
C.
,
2020
, “
Using the Functional Resonance Analysis Method (FRAM) in Aviation Safety: A Systematic Review
,”
J. Adv. Transp.
,
2020
, pp.
1
14
.
39.
Macchi
,
L.
,
2010
, “
A Resilience Engineering Approach for the Evaluation of Performance Variability: Development and Application of the Functional Resonance Analysis Method for Air Traffic Management Safety Assessment
,” Ph.D. thesis,
Business Administration, École Nationale Supérieure des Mines de Paris, Paris, France
.
40.
Hollnagel, E., 2016, “The Functional Resonance Analysis Method”
, Linköping, Sweden, accessed Mar. 19,
2023
, https://functionalresonance.com/
41.
Musharraf
,
M.
,
Smith
,
D.
,
Smith
,
J.
, and
Veitch
,
B.
,
2022
, “
Knowledge Elicitation and Digitization Using FRAM to Inform Automation of Marine Operations in Ice
,”
ASME
Paper No. OMAE2022-80904.10.1115/OMAE2022-80904
42.
Hollnagel
,
E.
,
1998
,
Cognitive Reliability and Error Analysis Method (CREAM)
,
Elsevier Science Ltd
.,
Oxford, UK
.
43.
Slim
,
H.
, and
Nadeau
,
S.
,
2020
, “
Mixed Rough Sets/Fuzzy Logic Approach for Modelling Systemic Performance Variability With FRAM
,”
Sustainability
,
12
(
5
), p.
1918
.10.3390/su12051918
44.
Carvalho
,
P.
,
2011
, “
The Use of Functional Resonance Analysis Method (FRAM) in a Mid-Air Collision to Improve the Safety and Resilience of the Air Traffic Management System
,”
Reliab. Eng. Syst. Saf.
,
96
(
11
), pp.
1482
1498
.10.1016/j.ress.2011.05.009
45.
Jensen
,
A.
, and
Aven
,
T.
,
2018
, “
A New Definition of Complexity in a Risk Analysis Setting
,”
Reliab. Eng. Syst. Saf.
,
171
, pp.
169
173
.10.1016/j.ress.2017.11.018
46.
Hirose
,
T.
, and
Sawaragi
,
T.
,
2020
, “
Extended FRAM Model Based on Cellular Automaton to Clarify Complexity of Socio-Technical Systems and Improve Their Safety
,”
Saf. Sci.
,
123
, p.
104556
.10.1016/j.ssci.2019.104556
47.
Yang
,
M.
,
2020
, “
System Safety Assessment Using Safety Entropy
,”
J. Loss Prev. Process Ind.
,
66
, p.
104174
.10.1016/j.jlp.2020.104174
48.
Steen
,
R.
,
Patriarca
,
R.
, and
Di Gravio
,
G.
,
2021
, “
The Chimera of Time: Exploring the Functional Properties of an Emergency Response Room in Action
,”
J. Contingencies Crisis Manage.
,
29
(
4
), pp.
399
415
.10.1111/1468-5973.12353
You do not currently have access to this content.