Abstract

Direct inverse analysis of faults in machinery systems such as gears using first principle is intrinsically difficult, owing to the multiple time- and length-scales involved in vibration modeling. As such, data-driven approaches have been the mainstream, whereas supervised trainings are deemed effective. Nevertheless, existing techniques often fall short in their ability to generalize from discrete data labels to the continuous spectrum of possible faults, which is further compounded by various uncertainties. This research proposes an interpretability-enhanced deep learning framework that incorporates Bayesian principles, effectively transforming convolutional neural networks (CNNs) into dynamic predictive models and significantly amplifying their generalizability with more accessible insights of the model's reasoning processes. Our approach is distinguished by a novel implementation of Bayesian inference, enabling the navigation of the probabilistic nuances of gear fault severities. By integrating variational inference into the deep learning architecture, we present a methodology that excels in leveraging limited data labels to reveal insights into both observed and unobserved fault conditions. This approach improves the model's capacity for uncertainty estimation and probabilistic generalization. Experimental validation on a lab-scale gear setup demonstrated the framework's superior performance, achieving nearly 100% accuracy in classifying known fault conditions, even in the presence of significant noise, and maintaining 96.15% accuracy when dealing with unseen fault severities. These results underscore the method's capability in discovering implicit relations between known and unseen faults, facilitating extended fault diagnosis, and effectively managing large degrees of measurement uncertainties.

References

1.
Afia
,
A.
,
Rahmoune
,
C.
,
Benazzouz
,
D.
,
Merainani
,
B.
, and
Fedala
,
S.
,
2020
, “
New Intelligent Gear Fault Diagnosis Method Based on Autogram and Radial Basis Function Neural Network
,”
Adv. Mech. Eng.
,
12
(
5
), p.
168781402091659
.10.1177/1687814020916593
2.
Zhang
,
S.
, and
Tang
,
J.
,
2018
, “
Integrating Angle-Frequency Domain Synchronous Averaging Technique With Feature Extraction for Gear Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
99
, pp.
711
729
.10.1016/j.ymssp.2017.07.001
3.
Feng
,
Z.
,
Gao
,
A.
,
Li
,
K.
, and
Ma
,
H.
,
2021
, “
Planetary Gearbox Fault Diagnosis Via Rotary Encoder Signal Analysis
,”
Mech. Syst. Signal Process.
,
149
, p.
107325
.10.1016/j.ymssp.2020.107325
4.
Wang
,
T.
,
Han
,
Q.
,
Chu
,
F.
, and
Feng
,
Z.
,
2019
, “
Vibration Based Condition Monitoring and Fault Diagnosis of Wind Turbine Planetary Gearbox: A Review
,”
Mech. Syst. Signal Process.
,
126
, pp.
662
685
.10.1016/j.ymssp.2019.02.051
5.
Sun
,
R.
,
Yang
,
Z.
,
Chen
,
X.
,
Tian
,
S.
, and
Xie
,
Y.
,
2018
, “
Gear Fault Diagnosis Based on the Structured Sparsity Time-Frequency Analysis
,”
Mech. Syst. Signal Process.
,
102
, pp.
346
363
.10.1016/j.ymssp.2017.09.028
6.
Wang
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2010
, “
Enhancement of Signal Denoising and Multiple Fault Signatures Detecting in Rotating Machinery Using Dual-Tree Complex Wavelet Transform
,”
Mech. Syst. Signal Process.
,
24
(
1
), pp.
119
137
.10.1016/j.ymssp.2009.06.015
7.
Lin
,
J.
, and
Zuo
,
M. J.
,
2003
, “
Gearbox Fault Diagnosis Using Adaptive Wavelet Filter
,”
Mech. Syst. Signal Process.
,
17
(
6
), pp.
1259
1269
.10.1006/mssp.2002.1507
8.
Rafiee
,
J.
,
Rafiee
,
M. A.
, and
Tse
,
P. W.
,
2010
, “
Application of Mother Wavelet Functions for Automatic Gear and Bearing Fault Diagnosis
,”
Expert Syst. Appl.
,
37
(
6
), pp.
4568
4579
.10.1016/j.eswa.2009.12.051
9.
Li
,
C.
,
Sanchez
,
R.-V.
,
Zurita
,
G.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Vásquez
,
R. E.
,
2016
, “
Gearbox Fault Diagnosis Based on Deep Random Forest Fusion of Acoustic and Vibratory Signals
,”
Mech. Syst. Signal Process.
,
76–77
, pp.
283
293
.10.1016/j.ymssp.2016.02.007
10.
Widodo
,
A.
, and
Yang
,
B.
,
2008
, “
Wavelet Support Vector Machine for Induction Machine Fault Diagnosis Based on Transient Current Signal
,”
Expert Syst. Appl.
,
35
(
1–2
), pp.
307
316
.10.1016/j.eswa.2007.06.018
11.
Chen
,
C.
,
Shen
,
F.
,
Xu
,
J.
, and
Yan
,
R.
,
2020
, “
Probabilistic Latent Semantic Analysis-Based Gear Fault Diagnosis Under Variable Working Conditions
,”
IEEE Trans. Instrum. Meas.
,
69
(
6
), pp.
2845
2857
.10.1109/TIM.2019.2925410
12.
Huang
,
X.
,
Xie
,
T.
,
Luo
,
S.
,
Wu
,
J.
,
Luo
,
R.
, and
Zhou
,
Q.
,
2024
, “
Incremental Learning With Multi-Fidelity Information Fusion for Digital Twin-Driven Bearing Fault Diagnosis
,”
Eng. Appl. Artif. Intell.
,
133
, p.
108212
.10.1016/j.engappai.2024.108212
13.
Huang
,
X.
,
Xie
,
T.
,
Wu
,
J.
,
Zhou
,
Q.
, and
Hu
,
J.
,
2024
, “
Deep Continuous Convolutional Networks for Fault Diagnosis
,”
Knowl.-Based Syst.
,
292
, p.
111623
.10.1016/j.knosys.2024.111623
14.
Cao
,
P.
,
Zhang
,
S.
, and
Tang
,
J.
,
2018
, “
Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural Network-Based Transfer Learning
,”
IEEE Access
,
6
, pp.
26241
26253
.10.1109/ACCESS.2018.2837621
15.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
, Cambridge, MA.
16.
Zhou
,
Q.
, and
Tang
,
J.
,
2024
, “
An Interpretable Parallel Spatial CNN-LSTM Architecture for Fault Diagnosis in Rotating Machinery
,”
IEEE Internet Things J.
,
11
(
19
), pp.
31730
31744
.10.1109/JIOT.2024.3422969
17.
Kim
,
S.
, and
Choi
,
J.-H.
,
2019
, “
Convolutional Neural Network for Gear Fault Diagnosis Based on Signal Segmentation Approach
,”
Struct. Health Monit.
,
18
(
5–6
), pp.
1401
1415
.10.1177/1475921718805683
18.
Chen
,
P.
,
Li
,
Y.
,
Wang
,
K.
, and
Zuo
,
M. J.
,
2021
, “
An Automatic Speed Adaption Neural Network Model for Planetary Gearbox Fault Diagnosis
,”
Measurement
,
171
, p.
108784
.10.1016/j.measurement.2020.108784
19.
Shi
,
J.
,
Peng
,
D.
,
Peng
,
Z.
,
Zhang
,
Z.
,
Goebel
,
K.
, and
Wu
,
D.
,
2022
, “
Planetary Gearbox Fault Diagnosis Using Bidirectional-Convolutional LSTM Networks
,”
Mech. Syst. Signal Process.
,
162
, p.
107996
.10.1016/j.ymssp.2021.107996
20.
Li
,
Y.
,
Cheng
,
G.
,
Liu
,
C.
, and
Chen
,
X.
,
2018
, “
Study on Planetary Gear Fault Diagnosis Based on Variational Mode Decomposition and Deep Neural Networks
,”
Measurement
,
130
, pp.
94
104
.10.1016/j.measurement.2018.08.002
21.
Saufi
,
S. R.
,
Bin Ahmad
,
Z. A.
,
Leong
,
M. S.
, and
Lim
,
M. H.
,
2020
, “
Gearbox Fault Diagnosis Using a Deep Learning Model With Limited Data Sample
,”
IEEE Trans. Ind. Inf.
,
16
(
10
), pp.
6263
6271
.10.1109/TII.2020.2967822
22.
Zhou
,
K.
,
Diehl
,
E.
, and
Tang
,
J.
,
2023
, “
Deep Convolutional Generative Adversarial Network With Semi-Supervised Learning Enabled Physics Elucidation for Extended Gear Fault Diagnosis Under Data Limitations
,”
Mech. Syst. Signal Process.
,
185
, p.
109772
.10.1016/j.ymssp.2022.109772
23.
Hu
,
C.
,
Wu
,
J.
,
Sun
,
C.
,
Yan
,
R.
, and
Chen
,
X.
,
2023
, “
Interinstance and Intratemporal Self-Supervised Learning With Few Labeled Data for Fault Diagnosis
,”
IEEE Trans. Ind. Inf.
,
19
(
5
), pp.
6502
6512
.10.1109/TII.2022.3183601
24.
Tang
,
Z.
,
Bo
,
L.
,
Liu
,
X.
, and
Wei
,
D.
,
2022
, “
A Semi-Supervised Transferable LSTM With Feature Evaluation for Fault Diagnosis of Rotating Machinery
,”
Appl. Intell.
,
52
(
2
), pp.
1703
1717
.10.1007/s10489-021-02504-1
25.
Yu
,
K.
,
Lin
,
T. R.
,
Ma
,
H.
,
Li
,
X.
, and
Li
,
X.
,
2021
, “
A Multi-Stage Semi-Supervised Learning Approach for Intelligent Fault Diagnosis of Rolling Bearing Using Data Augmentation and Metric Learning
,”
Mech. Syst. Signal Process.
,
146
, p.
107043
.10.1016/j.ymssp.2020.107043
26.
Stone
,
J. V.
,
2013
, “
Bayes' Rule: A Tutorial Introduction to Bayesian Analysis
,” Sebtel Press, Frederick, MA.
27.
Huang
,
X.
,
Xie
,
T.
,
Hu
,
J.
, and
Zhou
,
Q.
,
2024
, “
Three-Dimensional Hybrid Fusion Networks for Current-Based Bearing Fault Diagnosis
,”
Meas. Sci. Technol.
,
35
(
2
), p.
025126
.10.1088/1361-6501/ad099b
28.
Avendaño-Valencia
,
L. D.
, and
Fassois
,
S. D.
,
2017
, “
Damage/Fault Diagnosis in an Operating Wind Turbine Under Uncertainty Via a Vibration Response Gaussian Mixture Random Coefficient Model Based Framework
,”
Mech. Syst. Signal Process.
,
91
, pp.
326
353
.10.1016/j.ymssp.2016.11.028
29.
Yu
,
J.
,
Bai
,
M.
,
Wang
,
G.
, and
Shi
,
X.
,
2018
, “
Fault Diagnosis of Planetary Gearbox With Incomplete Information Using Assignment Reduction and Flexible Naive Bayesian Classifier
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
37
47
.10.1007/s12206-017-1205-y
30.
Zhou
,
K.
, and
Tang
,
J.
,
2021
, “
Structural Model Updating Using Adaptive Multi-Response Gaussian Process Meta-Modeling
,”
Mech. Syst. Signal Process.
,
147
, p.
107121
.10.1016/j.ymssp.2020.107121
31.
Zhou
,
K.
, and
Tang
,
J.
,
2018
, “
Uncertainty Quantification in Structural Dynamic Analysis Using Two-Level Gaussian Processes and Bayesian Inference
,”
J. Sound Vib.
,
412
, pp.
95
115
.10.1016/j.jsv.2017.09.034
32.
Pinto
,
R. C.
, and
Engel
,
P. M.
,
2015
, “
A Fast Incremental Gaussian Mixture Model
,”
PLoS One
,
10
(
10
), p.
e0139931
.10.1371/journal.pone.0139931
33.
Belyaev
,
M.
,
Burnaev
,
E.
, and
Kapushev
,
Y.
,
2014
, “
Exact Inference for gaussian process Regression in Case of Big Data With the Cartesian Product Structure
,”
arXiv
:1403.6573.10.48550/arXiv.1403.6573
34.
Liu
,
H.
,
Ong
,
Y.-S.
,
Shen
,
X.
, and
Cai
,
J.
,
2020
, “
When Gaussian Process Meets Big Data: A Review of Scalable GPs
,”
IEEE Trans. Neural Networks Learn. Syst.
,
31
(
11
), pp.
4405
4423
.10.1109/TNNLS.2019.2957109
35.
Ul Abideen
,
Z.
,
Ghafoor
,
M.
,
Munir
,
K.
,
Saqib
,
M.
,
Ullah
,
A.
,
Zia
,
T.
,
Tariq
,
S. A.
,
Ahmed
,
G.
, and
Zahra
,
A.
,
2020
, “
Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks
,”
IEEE Access
,
8
, pp.
22812
22825
.10.1109/ACCESS.2020.2970023
36.
Kwon
,
Y.
,
Won
,
J. H.
,
Kim
,
B. J.
, and
Paik
,
M. C.
,
2020
, “
Uncertainty Quantification Using Bayesian Neural Networks in Classification: Application to Biomedical Image Segmentation
,”
Comput. Stat. Data Anal.
,
142
, p.
106816
.10.1016/j.csda.2019.106816
37.
Wei
,
Z.
, and
Chen
,
X.
,
2021
, “
Uncertainty Quantification in Inverse Scattering Problems With Bayesian Convolutional Neural Networks
,”
IEEE Trans. Antennas Propag.
,
69
(
6
), pp.
3409
3418
.10.1109/TAP.2020.3030974
38.
Sinha
,
S.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2021
, “
Object Shape Error Response Using Bayesian 3D Convolutional Neural Networks for Assembly Systems With Compliant Parts
,”
IEEE Trans. Ind. Inf.
,
17
(
10
), pp.
6676
6686
.10.1109/TII.2020.3043226
39.
Yang
,
H.
,
Jiao
,
S.
, and
Sun
,
P.
,
2020
, “
Bayesian-Convolutional Neural Network Model Transfer Learning for Image Detection of Concrete Water-Binder Ratio
,”
IEEE Access
,
8
, pp.
35350
35367
.10.1109/ACCESS.2020.2975350
40.
Haut
,
J. M.
,
Paoletti
,
M. E.
,
Plaza
,
J.
,
Li
,
J.
, and
Plaza
,
A.
,
2018
, “
Active Learning With Convolutional Neural Networks for Hyperspectral Image Classification Using a New Bayesian Approach
,”
IEEE Trans. Geosci. Remote Sens.
,
56
(
11
), pp.
6440
6461
.10.1109/TGRS.2018.2838665
41.
Portilla
,
J.
,
Strela
,
V.
,
Wainwright
,
M. J.
, and
Simoncelli
,
E. P.
,
2003
, “
Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain
,”
IEEE Trans. Image Process.
,
12
(
11
), pp.
1338
1351
.10.1109/TIP.2003.818640
42.
Karabatak
,
M.
,
2015
, “
A New Classifier for Breast Cancer Detection Based on Naïve Bayesian
,”
Measurement
,
72
, pp.
32
36
.10.1016/j.measurement.2015.04.028
43.
Sun
,
H.
,
Mordret
,
A.
,
Prieto
,
G. A.
,
Toksöz
,
M. N.
, and
Büyüköztürk
,
O.
,
2017
, “
Bayesian Characterization of Buildings Using Seismic Interferometry on Ambient Vibrations
,”
Mech. Syst. Signal Process.
,
85
, pp.
468
486
.10.1016/j.ymssp.2016.08.038
44.
Niu
,
Z.
,
2020
, “
Frequency Response-Based Structural Damage Detection Using Gibbs Sampler
,”
J. Sound Vib.
,
470
, p.
115160
.10.1016/j.jsv.2019.115160
45.
Huang
,
Y.
,
Beck
,
J. L.
, and
Li
,
H.
,
2017
, “
Bayesian System Identification Based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling With Application to Structural Damage Assessment
,”
Comput. Methods Appl. Mech. Eng.
,
318
, pp.
382
411
.10.1016/j.cma.2017.01.030
46.
Zhou
,
K.
, and
Tang
,
J.
,
2016
, “
Highly Efficient Probabilistic Finite Element Model Updating Using Intelligent Inference With Incomplete Modal Information
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051016
.10.1115/1.4033965
47.
Gauvain
,
J.-L.
, and
Lee
,
C.-H.
,
1994
, “
Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observations of Markov Chains
,”
IEEE Trans. Speech Audio Process.
,
2
(
2
), pp.
291
298
.10.1109/89.279278
48.
Das
,
A.
, and
Debnath
,
N.
,
2020
, “
A Bayesian Model Updating With Incomplete Complex Modal Data
,”
Mech. Syst. Signal Process.
,
136
, p.
106524
.10.1016/j.ymssp.2019.106524
49.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.10.1080/01621459.2017.1285773
50.
Shridhar
,
K.
,
Laumann
,
F.
, and
Liwicki
,
M.
,
2019
, “
A Comprehensive Guide to Bayesian Convolutional Neural Network With Variational Inference
,”
arXiv
:1901.02731.10.48550/arXiv.1901.02731
51.
Kullback
,
S.
,
1997
,
Information Theory and Statistics
,
Dover Publications
, Mineola, New York.
52.
Yang
,
X.
,
2017
, “
Understanding the Variational Lower Bound
,” Variational Lower bound, ELBO, Hard Attention,
epub
.https://xyang35.github.io/2017/04/14/variational-lower-bound/
53.
Goodman
,
G. S.
,
2019
,
The Law of Large Numbers: How to Make Success Inevitable
,
Gildan Media Corporation
, Old Saybrook, CO.
54.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “
An Introduction to Variational Autoencoders
,”
Found. Trends® Mach. Learn.
,
12
(
4
), pp.
307
392
.10.1561/2200000056
55.
Papadopoulou
,
O.
,
Zampoglou
,
M.
,
Papadopoulos
,
S.
, and
Kompatsiaris
,
I.
,
2019
, “
A Corpus of Debunked and Verified User-Generated Videos
,”
Online Inf. Rev.
,
43
(
1
), pp.
72
88
.10.1108/OIR-03-2018-0101
56.
Gal
,
Y.
,
2016
,
Uncertainty in Deep Learning
,
University of Cambridge
, Cambridge, UK.
57.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
, et al.,
2016
, “
TensorFlow: A System for Large-Scale Machine Learning
,”
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation
(
OSDI ’16
), Savannah, GA, Nov. 2–4, pp.
265
283
.https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
58.
Zhou
,
K.
,
Sun
,
H.
,
Enos
,
R.
,
Zhang
,
D.
, and
Tang
,
J.
,
2021
, “
Harnessing Deep Learning for Physics-Informed Prediction of Composite Strength With Microstructural Uncertainties
,”
Comput. Mater. Sci.
,
197
, p.
110663
.10.1016/j.commatsci.2021.110663
59.
Boehmke
,
B.
, and
Greenwell
,
B. M.
,
2019
,
Hands-On Machine Learning With R
,
CRC Press
, Boca Raton, FL.
60.
Sammut
,
C.
, and
Webb
,
G. I.
,
2011
,
Encyclopedia of Machine Learning
,
Springer Science & Business Media
, New York.
61.
Scott
,
D. W.
,
2015
,
Multivariate Density Estimation: Theory, Practice, and Visualization
,
Wiley
, Hoboken,NJ.
You do not currently have access to this content.