Abstract

Accurate flight regime identification is critical for enhancing aircraft efficiency and safety. Traditionally, predictive models for aircraft operation have relied on complex, black-box machine learning techniques that lack transparency. This study introduces a more interpretable approach by leveraging the New Comprehensive Modular Aero-Propulsion System Simulation (N-CMAPSS) dataset and combining expanding window classification, voting schemes, and spectral clustering to detect distinct flight regimes. The method applies elastic registration to align time-shifted patterns and functional principal component analysis (FPCA) to reduce dimensionality, capturing core dynamics across flight regimes. These transformed features are fed into a genetic algorithm (GA)-assisted orthogonal matching pursuit (OMP) for sparse feature selection. Through evolutionary selection, crossover, and mutation, the most informative features are identified, enabling accurate predictions while maintaining transparency. This method outperforms more complex models in certain test cases, offering a balance between accuracy and interpretability that is essential for predictive maintenance and safety applications.

References

1.
Bechhoefer
,
E.
, and
Bernhard
,
A. P.
,
2007
, “
A Generalized Process for Optimal Threshold Setting in HUMS
,”
2007 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 3–10
, pp.
1
9
.
2.
Bechhoefer
,
E.
, and
Mayhew
,
E.
,
2006
, “
Mechanical Diagnostics System Engineering in IMD HUMS
,”
2006 IEEE Aerospace Conference
,
Big Sky, MT
, Mar. 4–11, pp.
1
8
.
3.
Tang
,
L.
,
Volponi
,
A. J.
, and
Prihar
,
E.
,
2019
, “
Extending Engine Gas Path Analysis Using Full Flight Data
,”
ASME
Paper No. GT2019-90161. 10.1115/GT2019-90161
4.
Léonard
,
O.
,
Borguet
,
S.
, and
Dewallef
,
P.
,
2008
, “
Adaptive Estimation Algorithm for Aircraft Engine Performance Monitoring
,”
J. Propul. Power
,
24
(
4
), pp.
763
769
.10.2514/1.34320
5.
Zhou
,
B.
,
2014
, “
PowerGen Gas Turbine Losses and Condition Monitoring: A Loss Data Based Study
,”
ASME
Paper No. IMECE2014-38198.10.1115/IMECE2014-38198
6.
Rashki
,
M.
, and
Faes
,
M. G.
,
2023
, “
No-Free-Lunch Theorems for Reliability Analysis
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
9
(
3
), p.
04023019
.10.1061/AJRUA6.RUENG-1015
7.
Klein
,
C.
,
Wolters
,
F.
,
Reitenbach
,
S.
, and
Schönweitz
,
D.
,
2018
, “
Integration of 3D-CFD Component Simulation Into Overall Engine Performance Analysis for Engine Condition Monitoring Purposes
,”
ASME
Paper No. GT2018-75719.10.1115/GT2018-75719
8.
Bhatnagar
,
L.
,
Paniagua
,
G.
,
Clemens
,
E.
, and
Bloxham
,
M.
,
2024
, “
A Probabilistic Approach to Turbine Uncertainty
,”
ASME J. Turbomach.
,
146
(
4
), p.
041009
.10.1115/1.4064187
9.
Larsen
,
T.
,
2013
, “
Cross-Platform Aviation Analytics Using Big-Data Methods
,”
2013 Integrated Communications, Navigation and Surveillance Conference (ICNS)
,
Herndon, VA
,
Apr. 22–25
, pp.
1
9
.
10.
Li
,
L.
,
Das
,
S.
,
John Hansman
,
R.
,
Palacios
,
R.
, and
Srivastava
,
A. N.
,
2015
, “
Analysis of Flight Data Using Clustering Techniques for Detecting Abnormal Operations
,”
J. Aerosp. Inf. Syst.
,
12
(
9
), pp.
587
598
.10.2514/1.I010329
11.
Sun
,
J.
,
Li
,
C.
,
Liu
,
C.
,
Gong
,
Z.
, and
Wang
,
R.
,
2019
, “
A Data-Driven Health Indicator Extraction Method for Aircraft Air Conditioning System Health Monitoring
,”
Chin. J. Aeronaut.
,
32
(
2
), pp.
409
416
.10.1016/j.cja.2018.03.024
12.
Arias Chao
,
M.
,
Kulkarni
,
C.
,
Goebel
,
K.
, and
Fink
,
O.
,
2021
, “
Aircraft Engine Run-to-Failure Dataset Under Real Flight Conditions for Prognostics and Diagnostics
,”
Data
,
6
(
1
), p.
5
.10.3390/data6010005
13.
Song
,
T.
,
Liu
,
C.
,
Wu
,
R.
,
Jin
,
Y.
, and
Jiang
,
D.
,
2022
, “
A Hierarchical Scheme for Remaining Useful Life Prediction With Long Short-Term Memory Networks
,”
Neurocomputing
,
487
, pp.
22
33
.10.1016/j.neucom.2022.02.032
14.
Berghout
,
T.
,
Mouss
,
M.-D.
,
Mouss
,
L.-H.
, and
Benbouzid
,
M.
,
2022
, “
ProgNet: A Transferable Deep Network for Aircraft Engine Damage Propagation Prognosis Under Real Flight Conditions
,”
Aerospace
,
10
(
1
), p.
10
.10.3390/aerospace10010010
15.
Ramos-Carreño
,
C.
,
Torrecilla
,
J. L.
,
Carbajo-Berrocal
,
M.
,
Marcos
,
P.
, and
Suárez
,
A.
,
2022
, “
scikit-fda: A Python Package for Functional Data Analysis
,”
J. Stat. Softw.
, 109(2), pp.
1
37
10.18637/jss.v109.i02.
16.
Arias Chao
,
M.
,
Kulkarni
,
C.
,
Goebel
,
KAI.
, and
Fink
,
O.
,
2022
, “
Fusing Physics-Based and Deep Learning Models for Prognostics
,”
Reliability Engineering & System Safety
,
217
, p.
107961
.10.1016/j.ress.2021.107961
17.
Okki
,
S.
,
Chebila
,
M.
, and
Nait-Said
,
R.
,
2024
, “
Causal Inference–Based Study of Key Contributors to Industrial Accidents
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
10
(
1
), p.
04023044
.10.1061/AJRUA6.RUENG-1116
18.
Todinov
,
M.
,
2020
, “
Using Algebraic Inequalities to Reduce Uncertainty and Risk
,”
ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
4
), p.
044501
.10.1115/1.4048403
19.
Simon
,
D. L.
,
Borguet
,
S.
,
Léonard
,
O.
, and
Zhang
,
X.
,
2014
, “
Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results
,”
ASME J. Eng. Gas Turbines Power
.,
136
(
4
), p. 041201.10.1115/1.4025482
You do not currently have access to this content.