Abstract

This paper proposes the active learning Kriging (ALK)-based reliability method for high-cycle fatigue reliability analysis of aero-engine gears. Uncertainties to affect the reliability of aero-engine gears are quantified with random variables, and the finite element simulation model of gears is refined to align with experimental data. Based on the Basquin equation, the S–N curve of the gear is fitted to the stress–life data obtained from experiments. The stress under given loads is obtained through simulation, and the corresponding life is derived from the S–N curve. Using the given permissible lifespan, the limit state function for gear fatigue reliability analysis is established. This function is then approximated using an active learning surrogate model, and the probability of failure is subsequently estimated. Furthermore, to enhance computational efficiency and accuracy, this paper reviews the origin of active learning strategy and defines an improvement function aimed at structural reliability analysis by drawing an analogy to the derivation process of the expected improvement (EI) learning function in the efficient global optimization (EGO) algorithm. Consequently, a novel learning function for active learning Kriging-based reliability analysis is derived. The application of this method to aero-engine gears made of 17CrNiMo6 steel verifies that it effectively enhances the efficiency of fatigue reliability analysis under ensuring a certain accuracy.

References

1.
Feng
,
K.
,
Ji
,
J. C.
, and
Ni
,
Q.
,
2023
, “
A Novel Gear Fatigue Monitoring Indicator and Its Application to Remaining Useful Life Prediction for Spur Gear in Intelligent Manufacturing Systems
,”
Int. J. Fatigue
,
168
, p.
107459
.10.1016/j.ijfatigue.2022.107459
2.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. South Afr. Inst. Min. Metall.
,
52
(
6
), pp.
119
139
.https://hdl.handle.net/10520/AJA0038223X_4792
3.
Park
,
J.
, and
Sandberg
,
I. W.
,
1991
, “
Universal Approximation Using Radial-Basis-Function Networks
,”
Neural Comput.
,
3
(
2
), pp.
246
257
.10.1162/neco.1991.3.2.246
4.
Hassoun
,
M. H.
,
1995
,
Fundamentals of Artificial Neural Networks
,
MIT Press
, Cambridge, MA.
5.
Hong
,
F.
,
Wei
,
P.
,
Bi
,
S.
, and
Beer
,
M.
,
2025
, “
Efficient Variational Bayesian Model Updating by Bayesian Active Learning
,”
Mech. Syst. Signal Process.
,
224
, p.
112113
.10.1016/j.ymssp.2024.112113
6.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A.
, and
Vapoik
,
V.
,
1996
, “
Support Vector Regression Machines
,”
Adv. Neural Inf. Process. Syst.
,
9
, pp.
155
161
.https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
7.
Rabitz
,
H.
, and
Aliş
,
Ö. F.
,
1999
, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2/3
), pp.
197
233
.10.1023/A:1019188517934
8.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.10.1016/j.strusafe.2004.09.001
9.
Liu
,
Z. C.
,
Huang
,
H. Y.
,
Xu
,
X. Y.
,
Xiong
,
M.
, and
Li
,
Q. Z.
,
2024
, “
An Efficient Global Optimization Algorithm Combining Revised Expectation Improvement Criteria and Kriging
,”
Eng. Optim.
,
56
(
4
), pp.
608
624
.10.1080/0305215X.2023.2170367
10.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.10.2113/gsecongeo.58.8.1246
11.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
12.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Surrogate Model Uncertainty Quantification for Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
192
, p.
106432
.10.1016/j.ress.2019.03.039
13.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2017
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
3
(
2
), p.
D4016002
.10.1061/AJRUA6.0000870
14.
Wang
,
Z.
, and
Shafieezadeh
,
A.
,
2019
, “
ESC: An Efficient Error-Based Stopping Criterion for Kriging-Based Reliability Analysis Methods
,”
Struct. Multidiscip. Optim.
,
59
(
5
), pp.
1621
1637
.10.1007/s00158-018-2150-9
15.
Zhang
,
C.
,
Wang
,
Z.
, and
Shafieezadeh
,
A.
,
2021
, “
Error Quantification and Control for Adaptive Kriging-Based Reliability Updating With Equality Information
,”
Reliab. Eng. Syst. Saf.
,
207
, p.
107323
.10.1016/j.ress.2020.107323
16.
Zhang
,
J.
,
Xiao
,
M.
,
Gao
,
L.
, and
Fu
,
J.
,
2018
, “
A Novel Projection Outline Based Active Learning Method and Its Combination With Kriging Metamodel for Hybrid Reliability Analysis With Random and Interval Variables
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
32
52
.10.1016/j.cma.2018.06.032
17.
Ruan
,
W.
, and
Lu
,
Z.
,
2015
, “
Estimation of Moment-Independent Importance Measure on Failure Probability and Its Application in Reliability Analysis
,”
J. Struct. Eng.
,
141
(
8
), p.
05014001
.10.1061/(ASCE)ST.1943-541X.0001173
18.
Hsu
,
W. C.
, and
Ching
,
J.
,
2010
, “
Evaluating Small Failure Probabilities of Multiple Limit States by Parallel Subset Simulation
,”
Probab. Eng. Mech.
,
25
(
3
), pp.
291
304
.10.1016/j.probengmech.2010.01.003
19.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
.10.1016/j.ress.2012.10.008
20.
Cadini
,
F.
,
Santos
,
F.
, and
Zio
,
E.
,
2014
, “
An Improved Adaptive Kriging-Based Importance Technique for Sampling Multiple Failure Regions of Low Probability
,”
Reliab. Eng. Syst. Saf.
,
131
, pp.
109
117
.10.1016/j.ress.2014.06.023
21.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H. J. S. S.
,
2016
, “
Assessing Small Failure Probabilities by AK-SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Reliab. Eng. Syst. Saf.
,
59
, pp.
86
95
.10.1016/j.strusafe.2015.12.003
22.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.10.2514/1.34321
23.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
24.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
.10.1016/j.ress.2016.09.003
25.
Zhang
,
X.
,
Wang
,
L.
, and
Sørensen
,
J. D.
,
2019
, “
REIF: A Novel Active-Learning Function Toward Adaptive Kriging Surrogate Models for Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
185
, pp.
440
454
.10.1016/j.ress.2019.01.014
26.
Langer
,
B. F.
,
1937
, “
Fatigue Failure From Stress Cycles of Varying Amplitude
,”
ASME J. Appl. Mech.
,
4
(
4
), pp.
A160
A162
.10.1115/1.4008807
27.
West
,
D. B.
, and
Truss
,
R. W.
,
2012
, “
Stochastic Fatigue Limits and Fatigue Life Variability in Oriented-PVC Pipe
,”
Polym. Test.
,
31
(
2
), pp.
304
311
.10.1016/j.polymertesting.2011.12.011
28.
Lv
,
Z.
,
Lu
,
Z.
, and
Wang
,
P.
,
2015
, “
A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering
,”
Comput. Math. Appl.
,
70
(
5
), pp.
1182
1197
.10.1016/j.camwa.2015.07.004
29.
Liu
,
W.
,
Zhang
,
L.
,
He
,
L.
, and
Liu
,
H.
,
2023
, “
Improved Maximum Likelihood Method for P-S-N Curve Fitting Method With Small Number Specimens and Application in T-Welded Joint
,”
Sci. Rep.
,
13
(
1
), p.
19202
.10.1038/s41598-023-46594-y
30.
Ma
,
Y. Z.
,
Liu
,
M.
,
Nan
,
H.
,
Li
,
H. S.
, and
Zhao
,
Z. Z.
,
2022
, “
A Novel Hybrid Adaptive Scheme for Kriging-Based Reliability Estimation—A Comparative Study
,”
Appl. Math. Modell.
,
108
, pp.
1
26
.10.1016/j.apm.2022.03.015
31.
Zhan
,
H.
, and
Xiao
,
N. C.
,
2024
, “
Expected Lifetime Prediction for Time- and Space-Dependent Structural Systems Based on Active Learning Surrogate Model
,”
Comput. Methods Appl. Mech. Eng.
,
429
, p.
117150
.10.1016/j.cma.2024.117150
32.
Shi
,
L.
,
Pan
,
B.
,
Chen
,
W.
, and
Wang
,
Z.
,
2024
, “
Deep Learning-Based Multi-Fidelity Surrogate Modeling for High Dimensional Reliability Prediction
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
10
(
3
), p.
031106
.10.1115/1.4065846
33.
Yang
,
L.
,
Bi
,
S.
,
Faes
,
M. G. R.
,
Broggi
,
M.
, and
Beer
,
M.
,
2022
, “
Bayesian Inversion for Imprecise Probabilistic Models Using a Novel Entropy-Based Uncertainty Quantification Metric
,”
Mech. Syst. Signal Process.
,
162
, p.
107954
.10.1016/j.ymssp.2021.107954
34.
Mahadevan
,
S.
,
Nath
,
P.
, and
Hu
,
Z.
,
2022
, “
Uncertainty Quantification for Additive Manufacturing Process Improvement: Recent Advances
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
010801
.10.1115/1.4053184
You do not currently have access to this content.