Abstract

The transitional Markov chain Monte Carlo (TMCMC) is one of the efficient algorithms for performing Markov chain Monte Carlo (MCMC) in the context of Bayesian uncertainty quantification in parallel computing architectures. However, the features that are associated with its efficient sampling are also responsible for its introducing of bias in the sampling. We demonstrate that the Markov chains of each subsample in TMCMC may result in uneven chain lengths that distort the intermediate target distributions and introduce bias accumulation in each stage of the TMCMC algorithm. We remedy this drawback of TMCMC by proposing uniform chain lengths, with or without burn-in, so that the algorithm emphasizes sequential importance sampling (SIS) over MCMC. The proposed Bayesian annealed sequential importance sampling (BASIS) removes the bias of the original TMCMC and at the same time increases its parallel efficiency. We demonstrate the advantages and drawbacks of BASIS in modeling of bridge dynamics using finite elements and a disk-wall collision using discrete element methods.

References

1.
Gordon
,
N. J.
,
Salmond
,
D. J.
, and
Smith
,
A. F. M.
,
1993
, “
Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation
,”
IEE Proc. F Radar Signal Process.
,
140
(
2
), pp.
107
113
.
2.
Kitagawa
,
G.
,
1996
, “
Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models
,”
J. Comput. Graphical Stat.
,
5
(
1
), pp.
1
25
.
3.
Del Moral
,
P.
,
1996
, “
Nonlinear Filtering: Interacting Particle Solution
,”
Markov Process. Relat. Fields
,
2
(
4
), pp.
555
580
.https://www.researchgate.net/publication/234052783_Non_Linear_Filtering_Interacting_Particle_Solution
4.
Liu
,
J.
, and
Chen
,
R.
,
1998
, “
Sequential Monte Carlo Methods for Dynamic Systems
,”
J. Am. Stat. Assoc.
,
93
(
443
), pp.
1032
1044
.
5.
Neal
,
R.
,
1998
, “
Annealed Importance Sampling
,” University of Toronto, Toronto, ON, Canada, Technical Report No.
9805
.ftp://www.cs.toronto.edu/pub/radford/ais-rev.pdf
6.
Beck
,
J.
, and
Au
,
S.
,
2002
, “
Bayesian Updating of Structural Models and Reliability Using Markov Chain Monte Carlo Simulation
,”
ASCE J. Eng. Mech.
,
128
(
4
), pp.
380
391
.
7.
Chopin
,
N.
,
2002
, “
A Sequential Particle Filter Method for Static Models
,”
Biometrika
,
89
(
3
), pp.
539
551
.
8.
Ching
,
J.
, and
Chen
,
Y.
,
2007
, “
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging
,”
ASCE J. Eng. Mech.
,
133
(
7
), pp.
816
832
.
9.
Ching
,
J.
, and
Wang
,
J.
,
2016
, “
Application of the Transitional Markov Chain Monte Carlo Algorithm to Probabilistic Site Characterization
,”
Eng. Geol.
,
203
, pp.
151
167
.
10.
Kirkpatrick
,
S.
,
Gelatt
,
C.
, and
Vecchi
,
M.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
11.
Del Moral
,
P.
,
Doucet
,
A.
, and
Jasra
,
A.
,
2006
, “
Sequential Monte Carlo Samplers
,”
J. R. Stat. Soc. B
,
68
(
3
), pp.
411
436
.
12.
Angelikopoulos
,
P.
,
Papadimitriou
,
C.
, and
Koumoutsakos
,
P.
,
2012
, “
Bayesian Uncertainty Quantification and Propagation in Molecular Dynamics Simulations: A High Performance Computing Framework
,”
J. Chem. Phys.
,
137
(
14
), p.
144103
.
13.
Zhang
,
Y.
, and
Yang
,
W.
,
2014
, “
A Comparative Study of the Stochastic Simulation Methods Applied in Structural Health Monitoring
,”
Eng. Comput.
,
31
(
7
), pp.
1484
1513
.
14.
Ortiz
,
G.
,
Alvarez
,
D.
, and
Bedoya-Ruiz
,
D.
,
2015
, “
Identification of BOUC-WEN Type Models Using the Transitional Markov Chain Monte Carlo Method
,”
Comput. Struct.
,
146
, pp.
252
269
.
15.
He
,
S.
, and
Ng
,
C.
,
2017
, “
Guided Wave-Based Identification of Multiple Cracks in Beams Using a Bayesian Approach
,”
Mech. Syst. Signal Process.
,
84
(
A
), pp.
324
345
.
16.
Beck
,
J.
,
2010
, “
Bayesian System Identification Based on Probability Logic
,”
Struct. Control Health Monit.
,
17
(
7
), pp.
825
847
.
17.
Hadjidoukas
,
P.
,
Angelikopoulos
,
P.
,
Papadimitriou
,
C.
, and
Koumoutsakos
,
P.
,
2015
, “
Π4U: A High Performance Computing Framework for Bayesian Uncertainty Quantification of Complex Models
,”
J. Comput. Phys.
,
284
, pp.
1
21
.
18.
Glynn
,
P. W.
, and
Heidelberger
,
P.
,
1991
, “
Analysis of Initial Transient Deletion for Replicated Steady-State Simulations
,”
Oper. Res. Lett.
,
10
(
8
), pp.
437
443
.
19.
Minson
,
S.
,
Simons
,
M.
, and
Beck
,
J.
,
2013
, “
Bayesian Inversion for Finite Fault Earthquake Source Models i-Theory and Algorithm
,”
Geophys. J. Int.
,
194
(
3
), pp.
1701
1726
.
20.
Betz
,
W.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2016
, “
Transitional Markov Chain Monte Carlo: Observations and Improvements
,”
ASCE J. Eng. Mech.
,
142
(
5
), p.
04016016
.
21.
Rosenthal
,
J.
,
2000
, “
Parallel Computing and Monte Carlo Algorithms
,”
Far East J. Theor. Stat.
,
4
(
2
), pp.
207
236
.
22.
Hadjidoukas
,
P. E.
,
Angelikopoulos
,
P.
,
Rossinelli
,
D.
,
Alexeev
,
D.
,
Papadimitriou
,
C.
, and
Koumoutsakos
,
P.
,
2014
, “
Bayesian Uncertainty Quantification and Propagation for Discrete Element Simulations of Granular Materials
,”
Comput. Methods Appl. Mech. Eng.
,
282
, pp.
218
238
.
23.
Papadimitriou
,
C.
, and
Papadioti
,
D.-C.
,
2013
, “
Component Mode Synthesis Techniques for Finite Element Model Updating
,”
Comput. Struct.
,
126
, pp.
15
28
.
24.
Kruggel-Emden
,
H.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2008
, “
A Study on Tangential Force Laws Applicable to the Discrete Element Method (DEM) for Materials With Viscoelastic or Plastic Behavior
,”
Chem. Eng. Sci.
,
63
(
6
), pp.
1523
1541
.
25.
Tsuji
,
Y.
,
Tanaka
,
T.
, and
Ishida
,
T.
,
1992
, “
Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe
,”
Powder Technol.
,
71
(
3
), pp.
239
250
.
You do not currently have access to this content.