Abstract

The gear door lock system (GDLS) is a hydraulic and mechatronic system with high degree of complexity and uncertainty, making the performance assessment of the system especially intractable. We develop copula models to estimate the reliability of GDLS with dependent failure modes. Based on the working principle of the GDLS, kinematic and dynamic model with imperfect joints is built in which Latin hypercube sampling (LHS) and kernel smoothing density are utilized to obtain the marginal failure probabilities. Then, copula models are utilized to describe the dependence between the two function failure modes. Furthermore, to be more accurate, mixed copula models are developed. The squared Euclidean distance is adopted to estimate the parameters of the above reliability models. Finally, the Monte Carlo simulation is conducted to evaluate different reliability models.

References

1.
Zhang
,
L. G.
,
Lu
,
Z. Z.
,
Cheng
,
L.
, and
Fan
,
C. Q.
,
2014
, “
A New Method for Evaluating Borgonovo Moment-Independent Importance Measure With Its Application in an Aircraft Structure
,”
Reliab. Eng. Syst. Saf.
,
132
, pp.
163
175
.
2.
Wei
,
P. F.
,
Song
,
J. W.
,
Lu
,
Z. Z.
, and
Yue
,
Z. F.
,
2016
, “
Time-Dependent Reliability Sensitivity Analysis of Motion Mechanisms
,”
Reliab. Eng. Syst. Saf.
,
149
, pp.
107
120
.
3.
Guo
,
W.
,
Cui
,
W. M.
, and
Shi
,
Y.
,
2016
, “
Function Failure and Failure Boundary Analysis for an Aircraft Lock Mechanism
,”
Eng. Failure Anal.
,
70
, pp.
428
442
.
4.
Jiang
,
C.
,
Zhang
,
W.
, and
Han
,
X.
,
2015
, “
A Vine-Copula-Based Reliability Analysis Method for Structures With Multidimensional Correlation
,”
ASME J. Mech. Des.
,
137
(
6
), p. 061405.
5.
Pang
,
H.
,
Yu
,
T. X.
, and
Song
,
B. F.
,
2016
, “
Failure Mechanism Analysis and Reliability Assessment of an Aircraft Slat
,”
Eng. Failure Anal.
,
60
, pp.
261
279
.
6.
Mavris
,
D.
,
Mantis
,
G.
, and
Kirby
,
M.
,
1997
, “
Demonstration of a Probabilistic Technique for the Determination of Aircraft Economic Viability
,”
AIAA
Paper No. 975585.
7.
Zhang
,
J.
,
Messac
,
A.
,
Zhang
,
J.
, and
Chowdhury
,
S.
,
2012
, “
Improving the Accuracy of Surrogate Models Using Inverse Transform Sampling
,”
AIAA
Paper No. 2012-1429.
8.
Brown
,
A.
,
DeHaye
,
M.
, and
DeLessio
,
S.
,
2013
, “
Probabilistic Methods to Determine Resonance Risk and Damping for Rocket Turbine Blades
,”
J. Propul. Power
,
29
(
6
), pp.
1367
1373
.
9.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
, 2nd ed.,
Springer
,
New York
.
10.
Wang
,
Y.
, and
Pham
,
H.
,
2012
, “
Modeling the Dependent Competing Risks With Multiple Degradation Processes and Random Shock Using Time-Varying Copulas
,”
IEEE Trans. Reliab.
,
61
(
1
), pp.
13
22
.
11.
Tang
,
X. S.
,
Li
,
D. Q.
,
Zhou
,
C. B.
,
Phoon
,
K. K.
, and
Zhang
,
L. M.
,
2013
, “
Impact of Copulas for Modeling Bivariate Distributions on System Reliability
,”
Struct. Saf.
,
44
, pp.
80
90
.
12.
Eryilmaz
,
S.
,
2014
, “
Multivariate Copula Based Dynamic Reliability Modeling With Application to Weighted-k-Out-of-n Systems of Dependent Components
,”
Struct. Saf.
,
51
, pp.
23
28
.
13.
An
,
Z. W.
,
2015
, “
Reliability Copula Model for Wind Turbine Gearbox Based on Failure Correlation
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
20
(
3
), pp.
312
316
.
14.
An
,
Z. W.
, and
Sun
,
D.
,
2017
, “
Reliability Modeling for Systems Subject to Multiple Dependent Competing Failure Process With Shock Loads Above a Certain Level
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
129
138
.
15.
Li
,
D. Q.
,
2015
, “
Bivariate Distribution of Shear Strength Parameters Using Copulas and Its Impact on Geotechnical System Reliability
,”
Comput. Geosci.
,
68
, pp.
184
195
.
16.
Tang
,
X. S.
,
Li
,
D. Q.
, and
Zhou
,
C. B.
,
2013
, “
Bivariate Distribution Models Using Copulas for Reliability Analysis
,”
J. Risk Reliab.
,
227
(
5
), pp.
499
512
.
17.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
18.
Garcia de Jálon
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulations of Multibody Systems
,
Springer-Verlag
,
New York
.
19.
Flores
,
P.
,
Ambrosio
,
J.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2008
,
Kinematics and Dynamics of Multibody Systems With Imperfect Joints
,
Springer
,
Berlin
.
20.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
21.
Ambrósio
,
J. A. C.
,
2002
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,”
Virtual Nonlinear Multibody Systems
, Vol.
2
,
W.
Schiehlen
and
M.
Valásek
, eds.,
NATO Advanced Study Institute
, Lisboa, Portugal, pp.
15
33
.
22.
Elsayed
,
E. A.
,
2012
,
Reliability Engineering
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
23.
Clint
,
S.
,
2008
, “
Use of the Lognormal Distribution for the Coefficients of Friction and Wear
,”
Reliab. Eng. Syst. Saf.
,
93
(
10
), pp.
1574
1576
.
24.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
25.
Shu
,
Z.
, and
Jirutitijaroen
,
P.
,
2011
, “
Latin Hypercube Sampling Techniques for Power Systems Reliability Analysis With Renewable Energy Sources
,”
IEEE Trans. Power Syst.
,
26
(
4
), pp.
2066
2073
.
26.
der Kiureghian
,
A.
, and
Liu
,
P. L.
,
1986
, “
Structural Reliability Under Incomplete Probability Information
,”
J. Eng. Mech.
,
112
(
1
), pp.
85
104
.
27.
Richard
,
D. D.
,
Adrian
,
W. B.
, and
Adelchi
,
A.
,
1997
,
Applied Smoothing Techniques for Data Analysis
,
Oxford University Press
,
New York
.
28.
Han
,
W. Q.
,
2011
, “
Copula Analysis of Structural Systems Reliability With Correlated Failure Mode
,”
China Mech. Eng.
,
22
(
3
), pp.
278
282
.
29.
Cornell
,
C. A.
,
1967
, “
Bounds on the Reliability of Structural Systems
,”
J. Struct. Div.
,
93
(
1
), pp.
171
200
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0015101
30.
Ditlevsen
,
O.
,
1979
, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
,
7
(
4
), pp.
453
472
.
31.
Liu
,
J. S.
,
2001
,
Monte Carlo Strategies in Scientific Computing
,
Springer-Verlag
,
New York
.
32.
Binder
,
K.
,
1984
,
Application of the Monte Carlo Method in Strategies Physics
,
Springer-Verlag
,
Berlin
.
33.
Wu
,
Y. J.
, and
Sitakanta
,
M.
,
2006
, “
Variable Screening and Ranking Using Sampling-Based Sensitivity Measures
,”
Reliab. Eng. Syst. Saf.
,
91
(
6
), pp.
634
647
.
You do not currently have access to this content.