Abstract

Statistical volume elements (SVEs) are used to homogenize fracture strength of rock, based on the microcrack statistics of a real-world Yuen-Long marble sample. The small size of SVEs enables maintaining inhomogeneities in fracture properties with lower computational cost compared to methods that explicitly model microcracks at macroscale. Maintaining inhomogeneity is important to capture realistic fracture patterns in rock as a quasi-brittle material. Uniaxial tensile, uniaxial compressive, and shear strengths are derived for arbitrary angle for loading and orientation of a single crack by using the linear elastic fracture mechanics (LEFM) method and incorporating frictional effects. Mesoscopic fracture strength fields are generated for different strengths and angle of loading by traversing the spatial domain with circular SVEs. Increasing the SVE size smoothens the spatial inhomogeneity and angular anisotropy of homogenized strengths. Spatial and angular covariance functions of the random fields are obtained to demonstrate how fracture strength varies in space and by changing the angle of loading. Two isotropic and anisotropic rock domains are studied and shown to have very different single- and two-point statistics. Macroscopic fracture simulations by an asynchronous spacetime discontinuous Galerkin (aSDG) method demonstrate that most macroscopic cracks for the anisotropic domain are aligned with the weakest strength planes.

References

1.
Rinaldi
,
A.
,
Krajcinovic
,
D.
, and
Mastilovic
,
S.
,
2007
, “
Statistical Damage Mechanics and Extreme Value Theory
,”
Int. J. Damage Mech.
,
16
(
1
), pp.
57
76
.10.1177/1056789507060779
2.
Genet
,
M.
,
Couegnat
,
G.
,
Tomsia
,
A.
, and
Ritchie
,
R.
,
2014
, “
Scaling Strength Distributions in Quasi-Brittle Materials From Micro- to Macro-Scales: A Computational Approach to Modeling Nature-Inspired Structural Ceramics
,”
J. Mech. Phys. Solids
,
68
(
1
), pp.
93
106
.10.1016/j.jmps.2014.03.011
3.
Bazant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
, Cambridge, UK.
4.
Al-Ostaz
,
A.
, and
Jasiuk
,
I.
,
1997
, “
Crack Initiation and Propagation in Materials With Randomly Distributed Holes
,”
Eng. Fract. Mech.
,
58
(
5–6
), pp.
395
420
.10.1016/S0013-7944(97)00039-8
5.
Bazant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
, Vol.
16
,
CRC Press
, Boca Raton, FL.
6.
Kozicki
,
J.
, and
Tejchman
,
J.
,
2007
, “
Effect of Aggregate Structure on Fracture Process in Concrete Using 2D Lattice Model
,”
Arch. Mech.
,
59
(
4–5
), pp.
365
84
. http://am.ippt.pan.pl/am/article/view/v59p365
7.
Yin
,
X.
,
Chen
,
W.
,
To
,
A.
,
McVeigh
,
C.
, and
Liu
,
W.
,
2008
, “
Statistical Volume Element Method for Predicting Microstructure-Constitutive Property Relations
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
43–44
), pp.
3516
3529
.10.1016/j.cma.2008.01.008
8.
Li
,
J.
,
2000
, “
Debonding of the Interface as ‘Crack Arrestor’
,”
Int. J. Fract.
,
105
(
1
), pp.
57
79
.10.1023/A:1007603809972
9.
Fascetti
,
A.
,
Bolander
,
J. E.
, and
Nisticó
,
N.
,
2018
, “
Lattice Discrete Particle Modeling of Concrete Under Compressive Loading: Multiscale Experimental Approach for Parameter Determination
,”
J. Eng. Mech.
,
144
(
8
), p.
04018058
.10.1061/(ASCE)EM.1943-7889.0001480
10.
Weibull
,
W.
,
1939
, “
A Statistical Theory of the Strength of Materials
,”
R. Swed. Inst. Eng. Res.
,
151
, pp.
1
45
.http://www.barringer1.com/wa_files/Weibull-1939-Strength-of-Materials.pdf
11.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
, pp.
293
297
. https://pdfs.semanticscholar.org/88c3/7770028e7ed61180a34d6a837a9a4db3b264.pdf
12.
Abedi
,
R.
,
Omidi
,
O.
, and
Clarke
,
P.
,
2016
, “
Numerical Simulation of Rock Dynamic Fracturing and Failure Including Microscale Material Randomness
,”
50th U.S. Rock Mechanics/Geomechanics Symposium
, Houston, TX, Paper No.
ARMA 16–0531
. https://www.onepetro.org/conference-paper/ARMA-2016-531
13.
Abedi
,
R.
,
Haber
,
R.
, and
Elbanna
,
A.
,
2017
, “
Mixed-Mode Dynamic Crack Propagation in Rocks With Contact-Separation Mode Transitions
,”
51th U.S. Rock Mechanics/Geomechanics Symposium
, San Francisco, CA, Paper No.
ARMA 17–0679
.https://www.onepetro.org/conference-paper/ARMA-2017-0679
14.
Abedi
,
R.
,
Haber
,
R. B.
, and
Clarke
,
P. L.
,
2017
, “
Effect of Random Defects on Dynamic Fracture in Quasi-Brittle Materials
,”
Int. J. Fract.
,
208
(
1–2
), pp.
241
268
.10.1007/s10704-017-0243-x
15.
Taylor
,
L. M.
,
Chen
,
E.-P.
, and
Kuszmaul
,
J. S.
,
1986
, “
Microcrack-Induced Damage Accumulation in Brittle Rock Under Dynamic Loading
,”
Comput. Methods Appl. Mech. Eng.
,
55
(
3
), pp.
301
320
.10.1016/0045-7825(86)90057-5
16.
Homand-Etienne
,
F.
,
Hoxha
,
D.
, and
Shao
,
J.
,
1998
, “
A Continuum Damage Constitutive Law for Brittle Rocks
,”
Comput. Geotech.
,
22
(
2
), pp.
135
151
.10.1016/S0266-352X(98)00003-2
17.
Shao
,
J.
, and
Rudnicki
,
J.
,
2000
, “
A Microcrack-Based Continuous Damage Model for Brittle Geomaterials
,”
Mech. Mater.
,
32
(
10
), pp.
607
619
.10.1016/S0167-6636(00)00024-7
18.
Lu
,
Y.
,
Elsworth
,
D.
, and
Wang
,
L.
,
2013
, “
Microcrack-Based Coupled Damage and Flow Modeling of Fracturing Evolution in Permeable Brittle Rocks
,”
Comput. Geotech.
,
49
, pp.
226
44
.10.1016/j.compgeo.2012.11.009
19.
Nguyen
,
V.
,
Stroeven
,
M.
, and
Sluys
,
L.
,
2011
, “
Multiscale Continuous and Discontinuous Modeling of Heterogeneous Materials: A Review on Recent Developments
,”
J. Multiscale Modell.
,
03
(
4
), pp.
229
270
.10.1142/S1756973711000509
20.
Ostoja-Starzewski
,
M.
,
2002
, “
Microstructural Randomness Versus Representative Volume Element in Thermomechanics
,”
ASME J. Appl. Mech.
,
69
(
1
), pp.
25
35
.10.1115/1.1410366
21.
Suquet
,
P.
,
1997
, “
Continuum Micromechanics
,”
CISM Courses Lectures
, Vol.
272
, International Centre for Mechanical Sciences, Udine, Italy.
22.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
79
.10.1016/S0020-7683(03)00143-4
23.
Liu
,
W. K.
,
Siad
,
L.
,
Tian
,
R.
,
Lee
,
S.
,
Lee
,
D.
,
Yin
,
X.
,
Chen
,
W.
,
Chan
,
S.
,
Olson
,
G. B.
,
Lindgen
,
L.-E.
,
Horstemeyer
,
M. F.
,
Chang
,
Y.-S.
,
Choi
,
J.-B.
, and
Kim
,
Y. J.
,
2009
, “
Complexity Science of Multiscale Materials Via Stochastic Computations
,”
Int. J. Numer. Methods Eng.
,
80
(
6–7
), pp.
932
978
.10.1002/nme.2578
24.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
112
132
.10.1016/j.probengmech.2005.07.007
25.
Matheron
,
G.
,
1989
,
Estimating and Choosing. An Essay on Probability on Practice
,
Springer
,
Berlin
.
26.
Lantuejoul
,
C.
,
1991
, “
Ergodicity and Integral Range
,”
J. Microsc.
,
161
(
3
), pp.
387
403
.10.1111/j.1365-2818.1991.tb03099.x
27.
Tregger
,
N.
,
Corr
,
D.
,
Graham-Brady
,
L.
, and
Shah
,
S.
,
2006
, “
Modeling the Effect of Mesoscale Randomness on Concrete Fracture
,”
Probab. Eng. Mech.
,
21
(
3
), pp.
217
225
.10.1016/j.probengmech.2005.11.002
28.
Baxter
,
S.
, and
Graham
,
L.
,
2000
, “
Characterization of Random Composites Using Moving-Window Technique
,”
J. Eng. Mech.
,
126
(
4
), pp.
389
397
.10.1061/(ASCE)0733-9399(2000)126:4(389)
29.
Huyse
,
L.
, and
Maes
,
M.
,
2001
, “
Random Field Modeling of Elastic Properties Using Homogenization
,”
J. Eng. Mech.
,
127
(
1
), pp.
27
36
.10.1061/(ASCE)0733-9399(2001)127:1(27)
30.
Segurado
,
J.
, and
LLorca
,
J.
,
2006
, “
Computational Micromechanics of Composites: The Effect of Particle Spatial Distribution
,”
Mech. Mater.
,
38
(
8–10
), pp.
873
883
.10.1016/j.mechmat.2005.06.026
31.
Clarke
,
P.
, and
Abedi
,
R.
,
2017
, “
Fracture Modeling of Rocks Based on Random Field Generation and Simulation of Inhomogeneous Domains
,”
51th U.S. Rock Mechanics/Geomechanics Symposium
, San Francisco, CA, June 25–28, Paper No.
ARMA 17–0643
.https://www.onepetro.org/conference-paper/ARMA-2017-0643
32.
Garrard
,
J. M.
,
Abedi
,
R.
, and
Clarke
,
P. L.
,
2018
, “
Modeling of Rock Inhomogeneity and Anisotropy by Explicit and Implicit Representation of Microcracks
,”
52nd U.S. Rock Mechanics/Geomechanics Symposium
, Seattle, WA, June 17–20, Paper No.
ARMA 18-151-0228-1094
.https://www.onepetro.org/conference-paper/ARMA-2018-1094
33.
Wong
,
T.-F.
,
Wong
,
R. H.
,
Chau
,
K.
, and
Tang
,
C.
,
2006
, “
Microcrack Statistics, Weibull Distribution and Micromechanical Modeling of Compressive Failure in Rock
,”
Mech. Mater.
,
38
(
7
), pp.
664
681
.10.1016/j.mechmat.2005.12.002
34.
Garrard
,
J. M.
,
Abedi
,
R.
, and
Clarke
,
P. L.
,
2018
, “
Statistical Volume Elements for the Characterization of Angle-Dependent Fracture Strengths
,”
ASME
Paper No. IMECE2018-88257.10.1115/IMECE2018-88257
35.
Pietruszczak
,
S.
, and
Mroz
,
Z.
,
2000
, “
Formulation of Anisotropic Failure Criteria Incorporating a Microstructure Tensor
,”
Comput. Geotech.
,
26
(
2
), pp.
105
112
.10.1016/S0266-352X(99)00034-8
36.
Pietruszczak
,
S.
,
Lydzba
,
D.
, and
Shao
,
J.
,
2002
, “
Modelling of Inherent Anisotropy in Sedimentary Rocks
,”
Int. J. Solids Struct.
,
39
(
3
), pp.
637
648
.10.1016/S0020-7683(01)00110-X
37.
Hoek
,
E.
, and
Brown
,
E. T.
,
1980
,
Underground Excavations in Rock
,
CRC Press
, Boca Raton, FL.
38.
Pietruszczak
,
S.
, and
Mroz
,
Z.
,
2001
, “
On Failure Criteria for Anisotropic Cohesive-Frictional Materials
,”
Int. J. Numer. Anal. Methods Geomech.
,
25
(
5
), pp.
509
524
.10.1002/nag.141
39.
Lee
,
Y.-K.
, and
Pietruszczak
,
S.
,
2008
, “
Application of Critical Plane Approach to the Prediction of Strength Anisotropy in Transversely Isotropic Rock Masses
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
4
), pp.
513
523
.10.1016/j.ijrmms.2007.07.017
40.
Shi
,
X.
,
Yang
,
X.
,
Meng
,
Y.
, and
Li
,
G.
,
2016
, “
An Anisotropic Strength Model for Layered Rocks Considering Planes of Weakness
,”
Rock Mech. Rock Eng.
,
49
(
9
), pp.
3783
92
.10.1007/s00603-016-0985-1
41.
Abedi
,
R.
,
Haber
,
R. B.
, and
Petracovici
,
B.
,
2006
, “
A Spacetime Discontinuous Galerkin Method for Elastodynamics With Element-Level Balance of Linear Momentum
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
25–28
), pp.
3247
3273
.10.1016/j.cma.2005.06.013
42.
Dowd
,
P.
,
Xu
,
C.
,
Mardia
,
K.
, and
Fowell
,
R.
,
2007
, “
A Comparison of Methods for the Stochastic Simulation of Rock Fractures
,”
Math. Geol.
,
39
(
7
), pp.
697
714
.10.1007/s11004-007-9116-6
43.
Renshaw
,
C. E.
,
1999
, “
Connectivity of Joint Networks With Power Law Length Distributions
,”
Water Resour. Res.
,
35
(
9
), pp.
2661
2670
.10.1029/1999WR900170
44.
Garrard
,
J. M.
, and
Abedi
,
R.
,
2019
, “
Statistical Volume Element Averaging Scheme for Fracture of Quasibrittle Materials
,”
Comput. Geotech.
(accepted).
45.
Erdogan
,
F.
, and
Sih
,
G.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
519
525
.10.1115/1.3656897
46.
Hussain
,
M.
,
Pu
,
S.
, and
Underwood
,
J.
,
1974
, “
Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II
,”
Fracture Analysis: 1973 National Symposium on Fracture Mechanics, In Part II
, ASTM International, College Park, MD, pp.
2
28
.
47.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
New York
.
48.
Ashby
,
M.
, and
Hallam
,
S.
,
1986
, “
The Failure of Brittle Solids Containing Small Cracks Under Compressive Stress States
,”
Acta Metall.
,
34
(
3
), pp.
497
510
.10.1016/0001-6160(86)90086-6
49.
Matheron
,
G.
,
1971
,
The Theory of Regionalized Variables and Its Applications
, Paris School of Mines Publications
, Paris, France.
50.
Neuman
,
S. P.
,
Riva
,
M.
, and
Guadagnini
,
A.
,
2008
, “
On the Geostatistical Characterization of Hierarchical Media
,”
Water Resour. Res.
,
44
(
2
), p. W02403.10.1029/2007WR006228
51.
Abedi
,
R.
,
Chung
,
S.-H.
,
Erickson
,
J.
,
Fan
,
Y.
,
Garland
,
M.
,
Guoy
,
D.
,
Haber
,
R.
,
Sullivan
,
J. M.
,
Thite
,
S.
, and
Zhou
,
Y.
,
2004
, “
Spacetime Meshing With Adaptive Refinement and Coarsening
,”
20th Annual Symposium on Computational Geometry
(
SCG '04
), ACM, Brooklyn, NY, June 8–11, pp.
300
309
.10.1145/997817.997863
52.
Abedi
,
R.
, and
Clarke
,
P. L.
,
2019
, “
A Computational Approach to Model Dynamic Contact and Fracture Mode Transitions in Rock
,”
Comput. Geotech.
,
109
, pp.
248
271
.10.1016/j.compgeo.2019.01.010
53.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
54.
Abedi
,
R.
,
Hawker
,
M. A.
,
Haber
,
R. B.
, and
Matouš
,
K.
,
2009
, “
An Adaptive Spacetime Discontinuous Galerkin Method for Cohesive Models of Elastodynamic Fracture
,”
Int. J. Numer. Methods Eng.
,
1
, pp.
1
42
.10.1002/nme.2723
55.
Abedi
,
R.
,
Haber
,
R. B.
,
Thite
,
S.
, and
Erickson
,
J.
,
2006
, “
An h–Adaptive Spacetime–Discontinuous Galerkin Method for Linearized Elastodynamics
,” Revue Européenne de Mécanique Numérique
(Eur. J. Comput. Mech.)
,
15
(
6
), pp.
619
642
.10.3166/remn.15.619-642
56.
Abedi
,
R.
,
Omidi
,
O.
, and
Enayatpour
,
S.
,
2018
, “
A Mesh Adaptive Method for Dynamic Well Stimulation
,”
Comput. Geotech.
,,
102
, pp.
12
27
.10.1016/j.compgeo.2018.05.006
57.
Belytschko
,
T.
, and
Black
,
T.
,
1999
, “
Elastic Crack Growth in Finite Elements With Minimal Remeshing
,”
Int. J. Numer. Methods Eng.
,
45
(
5
), pp.
601
620
.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
58.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
59.
Duarte
, C. A.
,
Babuška
,
I.
, and
Oden
,
T. J.
,
2000
, “
Generalized Finite Element Methods for Three-Dimensional Structural Mechanics
,”
Comput. Struct.
,
77
(
2
), pp.
215
232
.10.1016/S0045-7949(99)00211-4
60.
Strouboulis
,
T.
,
Babuska
,
I.
, and
Copps
,
K.
,
2000
, “
The Design and Analysis of the Generalized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
181
(
1–3
), pp.
43
69
.10.1016/S0045-7825(99)00072-9
61.
Abedi
,
R.
, and
Haber
,
R. B.
,
2018
, “
Spacetime Simulation of Dynamic Fracture With Crack Closure and Frictional Sliding
,”
Adv. Model. Simul. Eng. Sci.
,
5
(
1
), p.
22
.10.1186/s40323-018-0116-5
62.
Acton
,
K. A.
,
Baxter
,
S. C.
,
Bahmani
,
B.
,
Clarke
,
P. L.
, and
Abedi
,
R.
,
2018
, “
Voronoi Tessellation Based Statistical Volume Element Characterization for Use in Fracture Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
135
155
.10.1016/j.cma.2018.02.025
63.
Bahmani
,
B.
,
Yang
,
M.
,
Nagarajan
,
A.
,
Clarke
,
P. L.
,
Soghrati
,
S.
, and
Abedi
,
R.
,
2019
, “
Automated Homogenization-Based Fracture Analysis: Effects of SVE Size and Boundary Condition
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
701
727
.10.1016/j.cma.2018.11.009
64.
Karhunen
,
K.
, and
Selin
,
I.
,
1960
,
On Linear Methods in Probability Theory
,
Rand Corporation
, Santa Monica, CA.
65.
Loéve
,
M.
,
1977
,
Probability Theory
,
Springer
,
New York
.
66.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1993
,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam; New York
.
67.
Staber
,
B.
, and
Guilleminot
,
J.
,
2017
, “
Stochastic Modeling and Generation of Random Fields of Elasticity Tensors: A Unified Information-Theoretic Approach
,”
C. R. Méc.
,
345
(
6
), pp.
399
416
.10.1016/j.crme.2017.05.001
68.
Malyarenko
,
A.
, and
Ostoja-Starzewski
,
M.
,
2019
, “
Towards Stochastic Continuum Damage Mechanics
,”
Int. J. Solids Struct.
(in press).
You do not currently have access to this content.