Abstract

Tuned inerter dampers (TID) have been demonstrated as efficient energy dissipation devices for seismic response control. However, its potential capability for energy harvesting remains largely unexplored. Here, we present a theoretical analysis of the power of a structure-TID system subjected to earthquake ground motions. The analytical solutions (ASs) of the average damping power of the system are derived for considering white noise base excitations and the Kanai-Tajimi earthquake model, respectively. Comparisons of the numerical results of a Monte Carlo simulation and the theoretical predictions verify the accuracy of the analytical solutions. Besides, we uncover the influence of the TID parameters on the average damping power and output power of the system. The optimal frequency ratio of the TID for maximizing its output power slightly differs from that for seismic response control, and the former varies with site conditions. In contrast, both the damping power and output power are not sensitive to the damping ratio of the TID. For short-period structures, a small inertance-to-mass ratio (μ) of the TID is beneficial to maximize its output power, while seismic response control requires a large μ. For long-period structures, the damping power and output power are not sensitive to the μ. Generally, a structure-TID system on a soft soil site absorbs more energy from a given earthquake and is capable of harvesting more energy than that on a hard soil site. This study may help develop new strategies for self-powered control and monitoring in civil structures.

References

1.
Arai
,
T.
,
Aburakawa
,
T.
,
Ikago
,
K.
,
Hori
,
N.
, and
Inoue
,
N.
,
2009
, “
Verification on Effectiveness of a Tuned Viscous Mass Damper and Its Applicability to Non-Linear Structural Systems
,”
J. Struct. Constr. Eng.
,
74
(
645
), pp.
1993
2002
.10.3130/aijs.74.1993
2.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.10.1002/eqe.1138
3.
Kida
,
H.
,
Nakaminami
,
S.
,
Saito
,
K.
, Ikago, K., and Inoue, N.,
2010
, “
Verification in Analysis Model of Tuned Viscous Mass Damper Based on Full-Scale Dynamic Tests
,”
J. Struct. Eng.
,
56B
, pp.
137
146
(in Japanese).https://ci.nii.ac.jp/naid/110009706280/amp/en
4.
Sugimura
,
Y.
,
Goto
,
W.
,
Tanizawa
,
H.
,
Saito
K.
,
Ninomiya
T.
,
Nagasaku
T.
, and
Saito
K.
,
2012
, “
Response Control Effect of Steel Building Structure Using Tuned Viscous Mass Damper
,”
Proceedings of the 15th World Conference on Earthquake Engineering
, Lisbon, Portugal, Sept.https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_0138.pdf
5.
Wutong
,
Y.
,
Bing
,
H.
, and
Yongkui
,
W.
,
2016
, “
Seismic Control Analysis of Cable-Stayed Bridge Based on Tuned Viscous Mass Damper
,”
China Civ. Eng. J.
, (
Suppl. 1
), pp.
66
71
(in Chinese).
6.
Garrido
,
H.
,
Curadelli
,
O.
, and
Ambrosini
,
D.
,
2013
, “
Improvement of Tuned Mass Damper by Using Rotational Inertia Through Tuned Viscous Mass Damper
,”
Eng. Struct.
,
56
, pp.
2149
2153
.
7.
Zhang
,
R. F.
,
Zhao
,
Z. P.
, and
Dai
,
K. S.
,
2019
, “
Seismic Response Mitigation of a Wind Turbine Tower Using a Tuned Parallel Inerter Mass System
,”
J. Eng. Struct.
,
180
, pp.
29
39
.10.1016/j.engstruct.2018.11.020
8.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper–Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.10.1016/j.probengmech.2014.03.007
9.
Pietrosanti
,
D.
,
De Angelis
,
M.
, and
Basili
,
M.
,
2017
, “
Optimal Design and Performance Evaluation of Systems With Tuned Mass Damper Inerter (TMDI)
,”
Earthquake Eng. Struct. Dyn.
,
46
(
8
), pp.
1367
1388
.10.1002/eqe.2861
10.
De Domenico
,
D.
, and
Ricciardi
,
G.
,
2018
, “
An Enhanced Base Isolation System Equipped With Optimal Tuned Mass Damper Inerter (TMDI
,”
Earthquake Eng. Struct. Dyn.
,
47
(
5
), pp.
1169
–11
92
.10.1002/eqe.3011
11.
De Angelis
,
M.
,
Giaralis
,
A.
,
Petrini
,
F.
, and
Pietrosanti
,
D.
,
2019
, “
Optimal Tuning and Assessment of Inertial Dampers with Grounded Inerter for Vibration Control of Seismically Excited Base-Isolated Systems
,”
Eng. Struct.
,
196
, p.
109250
.10.1016/j.engstruct.2019.05.091
12.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.10.1002/eqe.2390
13.
Luo
,
J.
,
Jiang
,
J. Z.
, and
MacDonald
,
J. H. G.
,
2016
, “
Damping Performance of Taut Cables With Passive Absorbers Incorporating Inerters
,”
J. Phys. Conf. Ser.
,
744
, p.
012046
.10.1088/1742-6596/744/1/012046
14.
Domenico
,
D. D.
,
Impollonia
,
N.
, and
Ricciardi
,
G.
,
2018
, “
Soil-Dependent Optimum Design of a New Passive Vibration Control System Combining Seismic Base Isolation With Tuned Inerter Damper
,”
Soil Dyn. Earthquake Eng.
,
105
, pp.
37
53
.10.1016/j.soildyn.2017.11.023
15.
Shen
,
W.
,
Niyitangamahoro
,
A.
,
Feng
,
Z.
, and
Zhu
,
H.
,
2019
, “
Tuned Inerter Dampers for Civil Structures Subjected to Earthquake Ground Motions: Optimum Design and Seismic Performance
,”
Eng. Struct.
,
198
, p.
109470
.10.1016/j.engstruct.2019.109470
16.
Nakamura
,
Y.
,
Fukukita
,
A.
,
Tamura
,
K.
,
Yamazaki
,
I.
,
Matsuoka
,
T.
,
Hiramoto
,
K.
, and
Sunakoda
,
K.
,.
2014
, “
Seismic Response Control Using Electromagnetic Inertial Mass Dampers
,”
Earthquake Eng. Struct. Dyn.
,
43
(
4
), pp.
507
527
.10.1002/eqe.2355
17.
Li
,
Y.
,
Shen
,
W.
, and
Zhu
,
H.
,
2019
, “
Vibration Mitigation of Stay Cables Using Electromagnetic Inertial Mass Dampers: Full-Scale Experiment and Analysis
,”
Eng. Struct.
,
200
, p.
109693
.10.1016/j.engstruct.2019.109693
18.
Marian
,
L.
, and
Giaralis
,
A.
,
2017
, “
The Tuned Mass-Damper-Inerter for Harmonic Vibrations Suppression, Attached Mass Reduction, and Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
6
), pp.
665
678
.10.12989/sss.2017.19.6.665
19.
Asai
,
T.
,
Araki
,
Y.
, and
Ikago
,
K.
,
2018
, “
Structural Control With Tuned Inertial Mass Electromagnetic Transducers
,”
Struct. Control Health Monit.
,
25
(
2
), p.
e2059
.10.1002/stc.2059
20.
Zhu
,
H.
,
Li
,
Y.
,
Shen
,
W.
, and
Zhu
,
S.
,
2019
, “
Mechanical and Energy-Harvesting Model for Electromagnetic Inertial Mass Dampers
,”
Mech. Syst. Signal Process.
,
120
, pp.
203
220
.10.1016/j.ymssp.2018.10.023
21.
Petrini
,
F.
,
Giaralis
,
A.
, and
Wang
,
Z.
,
2020
, “
Optimal Tuned Mass-Damper-Inerter (TMDI) Design in Wind-Excited Tall Buildings for Occupants' Comfort Serviceability Performance and Energy Harvesting
,”
Eng. Struct.
,
204
, p.
109904
.10.1016/j.engstruct.2019.109904
22.
Zhu
,
S.
,
Shen
,
W.
, and
Xu
,
Y. L.
,
2012
, “
Linear Electromagnetic Devices for Vibration Damping and Energy Harvesting: Modeling and Testing
,”
Eng. Struct.
,
34
(
1
), pp.
198
212
.10.1016/j.engstruct.2011.09.024
23.
Shen
,
W.
, and
Zhu
,
S.
,
2015
, “
Harvesting Energy Via Electromagnetic Damper: Application to Bridge Stay Cables
,”
J. Intell. Mater. Syst. Struct.
,
26
(
1
), pp.
3
19
.10.1177/1045389X13519003
24.
Shen
,
W.
,
Zhu
,
S.
, and
Zhu
,
H.
,
2016
, “
Experimental Study on Using Electromagnetic Devices on Bridge Stay Cables for Simultaneous Energy Harvesting and Vibration Damping
,”
Smart Mater. Struct.
,
25
(
6
), pp.
065011
65027
.10.1088/0964-1726/25/6/065011
25.
Shen
,
W.
,
Zhu
,
S.
, and
Zhu
,
H.
,
2019
, “
Unify Energy Harvesting and Vibration Control Functions in Randomly Excited Structures With Electromagnetic Devices
,”
J. Eng. Mech.
,
145
(
1
), p.
04018115
.10.1061/(ASCE)EM.1943-7889.0001548
26.
Shen
,
W.
,
Zhu
,
S.
,
Zhu
,
H.
, and
Xu
,
Y. L.
,
2016
, “
Electromagnetic Energy Harvesting From Structural Vibrations During Earthquakes
,”
Smart Struct. Syst.
,
18
(
3
), pp.
449
470
.10.12989/sss.2016.18.3.449
27.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.10.1115/1.3119501
28.
Sun, J.
, and
Jiang, J.
,
1990
, “
Spectral Parameters of Kanai-Tajimi Spectrum Corresponding to Standard Response Spectrum
,”
World Earthquake Eng.
,
1990
(
01
), pp.
42
48 (in Chinese).
29.
Spanos
,
P. D.
,
Giaralis
,
A.
, and
Li
,
J.
,
2009
, “
Synthesis of Accelerograms Compatible With the Chinese GB 50011-2001 Design Spectrum Via Harmonic Wavelets: Artificial and Historic Records
,”
Earthquake Eng. Eng. Vib.
,
8
(
2
), pp.
189
206
.10.1007/s11803-009-9017-4
30.
GB 50011-2010,
2016
,
Code for Seismic Design of Buildings
, National Standard of the People's Republic of China (in Chinese),
China Building Industry Press
,
Beijing, China
.
You do not currently have access to this content.