Abstract

In a probabilistic design approach for cylindrical shells, Gaussian random fields are used to simulate geometric imperfections. The shape of imperfections depends, among others, on the autocorrelation properties of the random field. Underlying uncertainties such as a small sample size or imprecise measurements make it practically impossible to define a crisp correlation function. For a more realistic description of the imprecise correlation structure, the classical probabilistic approach is extended to a fuzzy stochastic approach. More exactly, the polymorphic uncertainty approach is used taking into account natural variability and incompleteness. Consequently, geometric imperfections are represented as fuzzy probability based random fields. Therefore, the required correlation parameters are described as polymorphic uncertain parameters. The quantification of uncertainties is demonstrated on real data. Furthermore, the polynomial chaos surrogate model is used for the alpha-level optimization in the fuzzy analysis. The sensitivity indices as a by-product of the surrogate model show the influence of the input parameters on the statistical parameters of the critical buckling load factor. The main purpose of this paper is to show how the presented methods can support the design process of cylindrical shells.

References

1.
Lauterbach
,
S.
,
Fina
,
M.
, and
Wagner
,
W.
,
2018
, “
Influence of Stochastic Geometric Imperfections on the Load-Carrying Behaviour of Thin-Walled Structures Using Constrained Random Fields
,”
Comput. Mech.
,
62
(
5
), pp.
1107
1125
. Nov,10.1007/s00466-018-1554-0
2.
van den Broek
,
S.
,
Minera
,
S.
,
Pirrera
,
A.
,
Weaver
,
P. M.
,
Jansen
,
E.
, and
Rolfes
,
R.
,
2020
, “
Enhanced Deterministic Performance of Panels Using Stochastic Variations of Geometry and Material
,”
AIAA J.
,
58
(
5
), pp.
2307
2320
.10.2514/1.J058962
3.
Broggi
,
M.
, and
Schuëller
,
G. I.
,
2011
, “
Efficient Modeling of Imperfections for Buckling Analysis of Composite Cylindrical Shells
,”
Eng. Struct.
,
33
(
5
), pp.
1796
1806
.10.1016/j.engstruct.2011.02.019
4.
Stefanou
,
G.
,
2011
, “
Response Variability of Cylindrical Shells With Stochastic non-Gaussian Material and Geometric Properties
,”
Eng. Struct.
,
33
(
9
), pp.
2621
2627
.10.1016/j.engstruct.2011.05.009
5.
Götz
,
M.
,
2017
, “
Numerische Entwurfsmethoden Unter Berücksichtigung Polymorpher Unschärfe
,” Ph.D. thesis,
Institute for Structural Analysis, TU Dresden
,
Germany
.
6.
Beer
,
M.
,
Graf
,
W.
, and
Kaliske
,
M.
,
2012
, “
Safety and Robustness Assessment of Structures With Generalized Data Uncertainty
,”
GACM Rep. German Assoc. Comput. Mech.
,
7
, pp.
23
28
.
7.
Pannier
,
S.
,
Waurick
,
M.
,
Graf
,
W.
, and
Kaliske
,
M.
,
2013
, “
Solutions to Problems With Imprecise Data–an Engineering Perspective to Generalized Uncertainty Models
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
105
120
.10.1016/j.ymssp.2012.08.002
8.
Graf
,
W.
,
Götz
,
M.
, and
Kaliske
,
M.
,
2015
, “
Analysis of Dynamical Processes Under Consideration of Polymorphic Uncertainty
,”
Struct. Saf.
,
52
, pp.
194
201
.10.1016/j.strusafe.2014.09.003
9.
Henning
,
C.
, and
Ricken
,
T.
,
2017
, “
Polymorphic Uncertainty Quantification for Stability Analysis of Fluid Saturated Soil and Earth Structures
,”
PAMM
,
17
(
1
), pp.
59
62
.10.1002/pamm.201710018
10.
Leichsenring
,
F.
,
Graf
,
W.
, and
Kaliske
,
M.
,
2016
, “
Numerical Simulation of Wooden Structures With Polymorphic Uncertainty in Material Properties
,”
Seventh International Conference on Reliable Engineering Computing
, Bochum, Germany, June 15–16, pp.
159
177
.https://www.researchgate.net/publication/325751514_Numerical_simulation_of_wooden_structures_with_polymorphic_uncertainty_in_material_properties
11.
Leichsenring
,
F.
,
Fuchs
,
A., W.
,
Graf
,
W.
, and
Kaliske
,
M.
,
2019
, “
Application of Recurrent Neural Networks in the Numerical Analysis of Reinforced Concrete Structures Considering Polymorphic Uncertainty
,”
PAMM
,
19
(
1
), p. e201900404.10.1002/pamm.201900404
12.
Freitag
,
S.
,
Edler
,
P.
,
Kremer
,
K.
, and
Meschke
,
G.
,
2020
, “
Multilevel Surrogate Modeling Approach for Optimization Problems With Polymorphic Uncertain Parameters
,”
Int. J. Approx. Reason.
,
119
, pp.
81
91
.10.1016/j.ijar.2019.12.015
13.
Faes
,
M.
, and
Moens
,
D.
,
2019
, “
Imprecise Random Field Analysis With Parametrized Kernel Functions
,”
Mech. Syst. Signal Process.
,
134
, p.
106334
.10.1016/j.ymssp.2019.106334
14.
Faes
,
M.
, and
Moens
,
D.
,
2020
, “
On Auto- and Cross-Interdependence in Interval Field Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
,
121
(
9
), pp.
2033
2050
.10.1002/nme.6297
15.
Dannert
,
M. M.
,
Fleury
,
R. M. N.
,
Fauc
,
A.
, and
Nackenhorst
,
U.
,
2019
, “
Non-Linear Finite Element Analysis Under Mixed Epistemic and Aleatory Uncertain Random Field Input
,” Proceedings of the 29th European Safety and Reliability Conference (
ESREL
), Hannover, Germany, Sept. 22–26, pp.
2693
2698
.10.3850/978-981-11-2724-3_0286-cd
16.
Schietzold
,
F. N.
,
Schmidt
,
A.
,
Dannert
,
M. M.
,
Fau
,
A.
,
Fleury
,
R. M. N.
,
Graf
,
W.
,
Kaliske
,
M.
,
Könke
,
C.
,
Lahmer
,
T.
, and
Nackenhorst
,
U.
,
2019
, “
Development of Fuzzy Probability Based Random Fields for the Numerical Structural Design
,”
GAMM-Mitteilungen
,
42
(
1
), p.
e201900004
.10.1002/gamm.201900004
17.
Schmidt
,
A.
,
Nguyen-Tuan
,
L.
,
Könke
,
C.
, and
Lahmer
,
T.
,
2017
, “
Application of Polymorphic Cross-Correlated Random Fields to Material Parameters of Heterogeneous Hydro-Mechanical Coupled Systems
,”
15th International Probabilitsic Workshop & 10th Dresdner Probablistik Workshop
, Dresden, Germany, Sept. 27–29, pp.
317
328
.
18.
Arbocz
,
J.
, and
Abramovich
,
H.
,
1979
, “
The Initial Imperfection Data Bank at the Delft University of Technology: Part 1
,” Delft University of Technology, Department of Aerospace Engineering, Report No. LR-290.
19.
Hanselowski
,
A.
,
Ihrle
,
S.
, and
Hanss
,
M.
,
2015
, “
A Fuzzy Model Updating Technique Motivated by Bayesian Inference
,”
Proceedings of the First ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering
, Crete Island, Greece, May 25–27, pp.
548
559
.
20.
Hose
,
D.
, and
Hanss
,
M.
,
2019
, “
Towards a General Theory for Data-Based Possibilistic Parameter Inference
,”
Proceedings of the Third International Conference on Uncertainty Quantification in Computational Sciences and Engineering , Crete Island, Greece, June 24–26, pp. 1–13.
21.
Fina
,
M.
,
Weber
,
P.
, and
Wagner
,
W.
,
2019
, “
Modeling of Aleatory and Epistemic Uncertainties in Probabilistic Design of Cylindrical Shells
,” Proceedings of the 29th European Safety and Reliability Conference (
ESREL
), Hannover, Germany, Sept. 22–26, pp.
2127
2134
.10.3850/978-981-11-2724-3_0143-cd
22.
Fina
,
M.
,
Weber
,
P.
, and
Wagner
,
W.
,
2019
, “
A Fuzzy Stochastic Correlation Model for Geometric Imperfections of Cylindrical Shells
,” 13th International Conference on Applications of Statistics and Probability in Civil Engineering (
ICASP13
), Seoul, South Korea, May
26
30
.10.22725/ICASP13.479
23.
Fina
,
M.
,
Weber
,
P.
, and
Wagner
,
W.
,
2020
, “
Polymorphic Uncertainty Modeling for the Simulation of Geometric Imperfections in Probabilistic Design of Cylindrical Shells
,”
Struct. Saf.
,
82
, p.
101894
.10.1016/j.strusafe.2019.101894
24.
Schenk
,
C.
, and
Schuëller
,
G.
,
2003
, “
Buckling Analysis of Cylindrical Shells With Random Geometric Imperfections
,”
Int. J. Non-Linear Mech.
,
38
(
7
), pp.
1119
1132
.10.1016/S0020-7462(02)00057-4
25.
Schenk
,
C.
, and
Schuëller
,
G.
,
2007
, “
Buckling Analysis of Cylindrical Shells With Cutouts Including Random Boundary and Geometric Imperfections
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
35–36
), pp.
3424
3434
.10.1016/j.cma.2007.03.014
26.
Möller
,
B.
, and
Beer
,
M.
,
2004
,
Fuzzy Randomness—Uncertainty in Civil Engineering and Computational Mechanics
,
Springer
,
Berlin
.
27.
Sudret
,
B.
,
2015
, “
Polynomial Chaos Expansions and Stochastic Finite Element Methods
,”
In Risk and Reliability in Geotechnical Engineering
,
J. C.
Kok-Kwang Phoon
, ed.,
CRC Press
,
Boca Raton/London/New York
, pp.
265
300
.
28.
Blatman
,
G.
,
2009
, “
Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis
,” Ph.D. thesis,
Université Blaise Pascal
,
Clermont-Ferrand, France
.
29.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.10.1016/j.jcp.2010.12.021
30.
Tibshirani
,
R.
,
Johnstone
,
I.
,
Hastie
,
T.
, and
Efron
,
B.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.10.1214/009053604000000067
31.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
32.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
Efficient Computation of Global Sensitivity Indices Using Sparse Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
95
(
11
), pp.
1216
1229
.10.1016/j.ress.2010.06.015
33.
Sobol'
,
I.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Comput. Simul.
, (
1
), pp.
407
–4
14
.
34.
Wagner
,
W.
, and
Gruttmann
,
F.
,
2005
, “
A Robust Non-Linear Mixed Hybrid Quadrilateral Shell Element
,”
Int. J. Numer. Methods Eng.
,
64
(
5
), pp.
635
666
.10.1002/nme.1387
35.
Gruttmann
,
F.
, and
Wagner
,
W.
,
2005
, “
A Linear Quadrilateral Shell Element With Fast Stiffness Computation
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4279
4300
.10.1016/j.cma.2004.11.005
36.
Li
,
C.
, and
Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.10.1061/(ASCE)0733-9399(1993)119:6(1136)
37.
Stein
,
E.
,
Lammering
,
R.
, and
Wagner
,
W.
,
1989
, “
Stability Problems in Continuum Mechanics and Their Numerical Computation
,”
Ing.-Arch.
,
59
(
2
), pp.
89
105
.10.1007/BF00538363
38.
Wagner
,
W.
,
1991
, “
Zur Behandlung von Stabilitätsproblemen der Elastostatik mit der Methode der Finiten Elemente
,” Habilitationsschrift, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, IBNM Universität Hannover, Report No. F91/1(1991).
39.
Wagner
,
W.
, and
Wriggers
,
P.
,
1988
, “
A Simple Method for the Calculation of Postcritical Branches
,”
Eng. Comput.
,
5
(
2
), pp.
103
109
.10.1108/eb023727
40.
Wagner
,
W.
,
1992
, “
Nonlinear Stability Analysis of Shells With the Finite Element Method
,”
Nonlinear Analysis of Shells by Finite Elements
,
Franz G.
Rammerstorfer
, ed., CISM, Vol.
328
, Springer, Wien 1992, pp.
91
130
.
41.
Wagner
,
W.
,
1995
, “
A Note on FEM Buckling Analysis
,”
Commun. Numer. Methods Eng.
,
11
(
2
), pp.
149
158
.10.1002/cnm.1640110208
You do not currently have access to this content.