Abstract

An approach is proposed for the evaluation of the probability density functions (PDFs) of the modal parameters for an ensemble of nominally identical structures when there is only access to a single structure and the dispersion parameter is known. The approach combines the Eigensystem realization algorithm on sets of dynamic data, with an explicit nonparametric probabilistic method. A single structure, either a mathematical model or a prototype, is used to obtain simulated data or measurements that are employed to build a discrete time state-space model description. The dispersion parameter is used to describe the uncertainty due to different sources such as the variability found in the population and the identification errors found in the noisy measurements from the experiments. With this approach, instead of propagating the uncertainties through the governing equations of the system, the distribution of the modal parameters of the whole ensemble is obtained by randomizing the matrices in the state-space model with an efficient procedure. The applicability of the approach is shown through the analysis of a two degrees-of-freedom mass-spring-damper system and a cantilever system. The results show that if the source of uncertainty is unknown and it is possible to specify an overall level of uncertainty, by having access to a single system's measurements, it is possible to evaluate the resulting PDFs on the modal parameters. It was also found that high values of the dispersion parameter may lead to nonphysical results such as negative damping ratios values.

References

1.
Soize
,
C.
,
2017
,
Uncertainty Quantification -An Accelerated Course With Advanced Applications in Computational Engineering
,
Springer International Publishing
,
Cham, Switzerland
.
2.
Wright
,
M.
, and
Weave
,
R.
,
2010
,
New Directions in Linear Acoustics and Vibration: Quantum Chaos, Random Matrix Theory, and Complexity
,
Cambridge University Press
, Cambridge, UK.
3.
Kompella
,
M. S.
, and
Bernhard
,
R. J.
,
1993
, “Measurement of the Statistical Variation of Structural-Acoustic Characteristics of Automotive Vehicles,”
SAE
Paper No. 931272.10.4271/931272
4.
Durand
,
J.-F.
,
Soize
,
C.
, and
Gagliardini
,
L.
,
2008
, “
Structural-Acoustic Modeling of Automotive Vehicles in Presence of Uncertainties and Experimental Identification and Validation
,”
J. Acoust. Soc. Am.
,
124
(
3
), pp.
1513
1525
.10.1121/1.2953316
5.
Zhang
,
J.
,
Shen
,
G.
,
Du
,
Y.
, and
Hu
,
P.
,
2013
, “
Modal Analysis of a Lightweight Engine Hood Design Considering Stamping Effects
,”
Applied Mechanics and Materials
,
Trans Tech Publications
, pp.
364
369
.https://doi.org/10.4028/www.scientific.net/AMM.281.364
6.
Reich
,
S.
, and
Cotter
,
C.
,
2015
, “
Probabilistic Forecasting and Bayesian Data Assimilation
,”
Probab. Forecasting Bayesian Data Assimilation
, pp.
1
297
.
7.
Langley
,
R. S.
,
2000
, “
Unified Approach to Probabilistic and Possibilistic Analysis of Uncertain Systems
,”
J. Eng. Mech.
,
126
(
11
), pp.
1163
1172
.10.1061/(ASCE)0733-9399(2000)126:11(1163)
8.
Soize
,
C.
,
2013
, “
Stochastic Modeling of Uncertainties in Computational Structural Dynamics - Recent Theoretical Advances
,”
J. Sound Vib.
,
332
(
10
), pp.
2379
2395
.10.1016/j.jsv.2011.10.010
9.
Simoen
,
E.
,
de Roeck
,
G.
, and
Lombaert
,
G.
,
2015
, “
Dealing With Uncertainty in Model Updating for Damage Assessment: A Review
,”
Mech. Syst. Signal Process.
,
56
, pp.
123
149
.10.1016/j.ymssp.2014.11.001
10.
Faes
,
M.
, and
Moens
,
D.
,
2020
, “
Recent Trends in the Modeling and Quantification of Non-Probabilistic Uncertainty
,”
Arch. Comput. Methods Eng.
,
27
(
3
), pp.
633
671
.10.1007/s11831-019-09327-x
11.
Soize
,
C.
,
2005
, “
A Comprehensive Overview of a Non-Parametric Probabilistic Approach of Model Uncertainties for Predictive Models in Structural Dynamics
,”
J. Sound Vib.
, 288(3), pp.
623
652
. 10.1016/j.jsv.2005.07.009
12.
Mehta
,
M. L.
,
2004
,
Random Matrices
, Elsevier, Amsterdam, The Netherlands.
13.
Arnst
,
M.
, and
Soize
,
C.
,
2019
, “
Identification and Sampling of Bayesian Posteriors of High-Dimensional Symmetric Positive-Definite Matrices for Data-Driven Updating of Computational Models
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
300
323
.10.1016/j.cma.2019.04.025
14.
Batou
,
A.
,
Soize
,
C.
, and
Audebert
,
S.
,
2015
, “
Model Identification in Computational Stochastic Dynamics Using Experimental Modal Data
,”
Mech. Syst. Signal Process.
,
50–51
, pp.
307
322
.10.1016/j.ymssp.2014.05.010
15.
Ezvan
,
O.
,
Batou
,
A.
,
Soize
,
C.
, and
Gagliardini
,
L.
,
2017
, “
Multilevel Model Reduction for Uncertainty Quantification in Computational Structural Dynamics
,”
Comput. Mech.
,
59
(
2
), pp.
219
246
.10.1007/s00466-016-1348-1
16.
Vishwanathan
,
A.
, and
Vio
,
G. A.
,
2019
, “
Numerical and Experimental Assessment of Random Matrix Theory to Quantify Uncertainty in Aerospace Structures
,”
Mech. Syst. Signal Process.
,
118
, pp.
408
422
.10.1016/j.ymssp.2018.09.006
17.
Langley
,
R. S.
, and
Cotoni
,
V.
,
2008
, “
Response Variance Prediction for Uncertain Vibro-Acoustic Systems Using a Hybrid Deterministic-Statistical Method
,”
J. Acoust. Soc. Am.
,
122
(
6
), p.
3445
.10.1121/1.2799499
18.
Langley
,
R. S.
,
Cicirello
,
A.
, and
Deckers
,
E.
,
2018
, “
The Effect of Generalised Force Correlations on the Response Statistics of a Harmonically Driven Random System
,”
J. Sound Vib.
,
413
, pp.
456
466
.10.1016/j.jsv.2017.08.011
19.
Vishwajeet
,
K.
,
Singla
,
P.
, and
Majji
,
M.
,
2017
, “
Random Matrix-Based Approach for Uncertainty Analysis of the Eigensystem Realization Algorithm
,”
J. Guid. Control, Dyn.
,
40
(
8
), pp.
1877
1891
.10.2514/1.G002469
20.
Soize
,
C.
,
2005
, “
Random Matrix Theory for Modeling Uncertainties in Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1333
1366
.10.1016/j.cma.2004.06.038
21.
Legault
,
J.
,
Langley
,
R. S.
, and
Woodhouse
,
J.
,
2012
, “
Physical Consequences of a Nonparametric Uncertainty Model in Structural Dynamics
,”
J. Sound Vib.
,
331
(
25
), pp.
5469
5487
.10.1016/j.jsv.2012.07.017
22.
Juang
,
J. N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control, Dyn.
,
8
(
5
), pp.
620
627
.10.2514/3.20031
23.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering
,
Cambridge University Press
, Cambridge, UK.10.1017/9781108380690
24.
Caicedo
,
J. M.
,
Dyke
,
S. J.
, and
Johnson
,
E. A.
,
2004
, “
Natural Excitation Technique and Eigensystem Realization Algorithm for Phase I of the IASC-ASCE Benchmark Problem: Simulated Data
,”
J. Eng. Mech.
,
130
(
1
), pp.
49
60
.10.1061/(ASCE)0733-9399(2004)130:1(49)
25.
Reynders
,
E.
,
2012
, “
System Identification Methods for (Operational) Modal Analysis: Review and Comparison
,”
Arch. Comput. Methods Eng.
,
19
(
1
), pp.
51
124
.10.1007/s11831-012-9069-x
26.
Silverman
,
B. W.
,
1986
,
Density Estimation for Statistics and Data Analysis
, Chapman & Hall, London.
27.
Wu
,
C.
,
Liu
,
H.
,
Qin
,
X.
, and
Wang
,
J.
,
2017
, “
Stabilization Diagrams to Distinguish Physical Modes and Spurious Modes for Structural Parameter Identification
,”
J. Vibroeng.
,
19
(
4
), pp.
2777
2794
.10.21595/jve.2017.17629
28.
The MathWorks Inc.,
2020
, “MATLAB, 9.9.0.1467703 (R2020b),” The MathWorks Inc., Natick, MA.
29.
Sinha
,
S.
,
2005
, “
Techniques for Real Normalization of Complex Modal Parameters for Updating and Correlation with FEM Models
,”
Master’s thesis
, University of Cincinnati, Cincinnati, OH.https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=ucin1123513814&disposition=inline
You do not currently have access to this content.