Abstract

In this paper, we provide a comprehensive definition and classification of various sources of uncertainty within the fields of Structural Dynamics, System Identification, and Structural Health Monitoring (SHM), with a primary focus on the latter. Utilizing the classical input-output system representation as a main contextual framework, we present a taxonomy of uncertainties, intended for consistent classification of uncertainties in SHM applications: (i) input uncertainty; (ii) model form uncertainty; (iii) model parameter/variable uncertainty; (iv) measurement uncertainty; and (v) inherent variability. We then critically review methods and algorithms that address these uncertainties in the context of key SHM tasks: system identification and model inference, model updating, accounting for environmental and operational variability, virtual sensing, damage identification, and prognostic health management. A benchmark shear frame model with hysteretic links is employed as a running example to illustrate the application of selected methods and algorithmic tools. Finally, we discuss open challenges and future research directions in uncertainty quantification for SHM.

This content is only available via PDF.