A hybrid Navier-Stokes potential flow methodology for modeling three-dimensional unsteady viscous flow over horizontal axis wind turbine configurations is presented. In this approach, the costly viscous flow equations are solved only in a small viscous flow region surrounding the rotor. The rest of the flow field is modeled using a potential flow methodology. The tip vortices are modeled using a free wake approach, which allows the vortices to deform and interact with each other. Sample results are presented for two rotor configurations tested by the National Renewable Energy Laboratory. Comparisons with experimental data, full Navier-Stokes simulations and blade element momentum theory are given to establish the efficiency and accuracy of the present scheme. [S0199-6231(00)00601-8]

1.
Brower, M. S., Tennis, M. W., Denzier, E. W., and Kaplan, M. M., 1993, Powering the Midwest: Renewable Electricity for the Economy and the Environment, Cambridge, MA: Union of Concerned Scientists; pp. 188.
2.
Cavallo, A. J., Hock, S. M., and Smith, D. R., 1993, “Wind Energy: Technology and Economics,” Chapter 3 in Renewable Energy: Sources for Fuels and Electricity. Edited by T. B. Johansson, H. Kelly, A. K. N. Reddy, and R. H. Williams, Washington, DC, Island Press, pp. 121–156.
3.
Tangler, J. L., Smith, B., and Jager, D., 1992, “SERI Advanced Wind Turbine Blades,” NREL/TP-257-4492. Golden, CO.
4.
Eppler, R., 1990, Airfoil Design and Data, Springer-Verlag, New York, p. 562.
5.
Tangler, J. L., 1987, Status of the Special-Purpose Airfoil Families, SERI/TP-217-3264. Golden, CO, Solar Energy Research Institute, p. 9.
6.
Selig, M. S., Donovan, J. F., and Fraser, D. B., 1989, Airfoils at Low Speeds, Soartech 8. Virginia Beach, VA, H.A. Stokely, p. 398.
7.
Hansen
,
A. C.
, and
Butterfield
,
C. P.
,
1993
, “
Aerodynamics of Horizontal-Axis Wind Turbines
,”
Annu. Rev. Fluid Mech.
,
25
, pp.
115
149
.
8.
Laino, D., and Butterfield, C. P., “Using YawDyn to Model Turbines with Aerodynamic Control Systems,” ASME Wind Energy Conference, New Orleans, LA, 1994.
9.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
, pp.
3
17
.
10.
Berezin
,
C. R.
, and
Sankar
,
L. N.
,
1994
, “
An Improved Navier-Stokes/Full Potential Coupled Analysis for Rotors
,”
Math. Comput. Modeling
,
19
, No.
3/4
, pp.
125
133
.
11.
Mello, O. A., 1994, “An Improved Navier-Stokes/Full Potential Method for Computation of Unsteady Compressible Flows,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA.
12.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.
13.
Beam
,
R.
, and
Warming
,
R. F.
,
1976
, “
An Implicit Finite Difference Algorithm for Hyperbolic Systems in Conservation Law Form
,”
J. Comput. Phys.
,
22
, pp.
87
110
.
14.
Pulliam
,
T. H.
, and
Chaussee
,
D. S.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
, pp.
347
363
.
15.
Sankar, L. N., Malone, J. B., and Tassa, Y., 1981, “An Implicit, Conservative Algorithm for Steady and Unsteady Transonic Potential Flows,” Proceedings of the AIAA 5th Computational Fluid Dynamics Conference.
16.
Steinhoff, J., Ramachandran, K., and Suryanarayanan, K., “Treatment of Covected Vortices in Compressible Potential Flow,” AD-A 135 157, pp. 22-1–22-12.
17.
Simms, D. A., Robinson, M. C., Hand, M. M., and Fingersh, L. J., 1996, Characterization and Comparison of Baseline Aerodynamic Performance of Optimally Twisted versus Non-Twisted HAWT Blades. Wind Energy Book VIII: Conference Papers, Proceeding from Energy Week ’96 January 2–February 2, 1996, Houston, Texas. I, pp. 143–148.
18.
Wolfe, W. P., and Ochs, S. S., 1997, “CFD Calculations of S809 Aerodynamic Characteristics,” AIAA paper 97-0973.
19.
Wolfe, W. P., and Ochs, S. S., 1997, “Predicting Aerodynamic Characteristics of Typical Wind Turbine Airfoils Using CFD,” Sandia Report SAND96-2345.
You do not currently have access to this content.