The performance of an air breathing proton exchange membrane (PEM) fuel cell stack has been experimentally measured to investigate the steady-state and transient effects of temperature, humidity and air flowrate. The results show that hydrogen leaks to the cathode through the membrane causing internal heating of the fuel cell. The leakage rate is found to be linearly dependent on the pressure difference between the hydrogen side and air side which is at atmospheric pressure. Temperature was found to not have a significant effect on the PEM performance, except through its indirect effect on humidity. The humidity of the membrane is found to be the most significant variable in determining the fuel cell performance. The airflow also influences the performance of the fuel cell directly by supplying oxygen and indirectly by influencing the humidity of the membrane. Experiments show that an optimum air flowrate exists that is much larger than required for stoichiometric oxidation of the fuel.

1.
Bernardi
,
D. M.
, and
Verbrugge
,
M.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
, pp.
2477
2491
.
2.
Maggio
,
G.
,
Recupero
,
V.
, and
Mategazza
,
C.
,
1996
, “
Modeling of Temperature Distribution in a Solid Polymer Electrolyte Fuel Cell Stack
,”
J. Power Sources
,
62
, pp.
167
174
.
3.
van Bussel Hubertus
,
P. L. H.
,
Koene
,
F. G. H.
, and
Mallant
,
R. K. A. M.
,
1998
, “
Dynamic Model of Solid Polymer Fuel Cell Water Management
,”
J. Power Sources
,
71
, pp.
218
222
.
4.
Thirumalai
,
D.
, and
White
,
R. E.
,
1997
, “
Mathematical Modeling of Proton-Exchange-Membrane Fuel-Cell Stacks
,”
J. Electrochem. Soc.
,
144
, pp.
1717
1723
.
5.
Wo¨hr
,
M.
,
Bolwin
,
K.
,
Schnurnberger
,
W.
,
Fischer
,
M.
,
Neubrand
,
W.
, and
Eigenberger
,
G.
,
1998
, “
Dynamic Modeling and Simulation of a Polymer Membrane Fuel Cell Including Mass Transport Limitations
,”
Int. J. Hydrogen Energy
,
23
, pp.
213
218
.
6.
Nguyen
,
T. V.
, and
White
,
R. E.
,
1993
, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
, pp.
2178
2186
.
7.
Vanderborgh, N. E., Kimble, M. C., Huff, J. R., and Hedstrom, J. C., 1992, “PEM Fuel Cell Stack Heat and Mass Management,” Intersociety of Energy Conversion Engineering Conf., pp. 3.407–3.411.
8.
Rho
,
Y. W.
,
Velev
,
O. A.
,
Srinivasan
,
S.
, and
Kho
,
Y. T.
,
1994
, “
Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O2/He, O2/Ar, O2/N2 Mixtures. I. Experimental Analysis
,”
J. Electrochem. Soc.
,
141
, pp.
2084
2089
.
9.
Rho
,
Y. W.
,
Velev
,
O. A.
,
Srinivasan
,
S.
, and
Kho
,
Y. T.
,
1994
, “
Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O2/He, O2/Ar, O2/N2 Mixtures. II. Theoretical Analysis
,”
J. Electrochem. Soc.
,
141
, pp.
2089
2096
.
10.
Buchi
,
F.
, and
Srinivasan
,
S.
,
1997
, “
Operating Proton Exchange Membrane Fuel Cells Without Eternal Humidification of the Reactant Gases
,”
J. Electrochem. Soc.
,
144
, pp.
2767
2772
.
11.
Kim
,
J.
,
Lee
,
S. M.
,
Srinivasan
,
S.
, and
Chamberlin
,
C. E.
,
1995
, “
Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation
,”
J. Electrochem. Soc.
,
142
, pp.
2670
2674
.
12.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
,
1995
, “
Performance of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. I. Mechanistic Model Development
,”
J. Electrochem. Soc.
,
142
, pp.
1
8
.
13.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Harris
,
T. J.
,
1995
, “
Performance of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. II. Empirical Model Development
,”
J. Electrochem. Soc.
,
142
, pp.
9
15
.
14.
Lee
,
J. H.
,
Lalk
,
T. R.
, and
Appleby
,
A. J.
,
1998
, “
Modeling Electrochemical Performance in Large Scale Proton Exchange Membrane Fuel Cell Stacks
,”
J. Power Sources
,
70
, pp.
258
268
.
15.
Bejan, A., 1984, Convection Heat Transfer, John Wiley and Sons, New York.
16.
Cisar, A., 1991, “Characterizing Fuel Cell Membrane Performance Under Load,” Proc. of ISECEC Conf., 3, pp. 611–618.
17.
Srinivasan
,
S.
,
Ticianelli
,
E. A.
,
Derouin
,
C. R.
, and
Redondo
,
A.
,
1988
, “
Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes
,”
J. Power Sources
,
22
, pp.
359
375
.
You do not currently have access to this content.