High-temperature solar reforming of methane with CO2 is investigated using a directly solar-irradiated absorber subjected to a solar mean flux level above 400kWm2 (the peak flux of about 700kWm2). The new type of catalytically activated ceramic foam absorber—a RuNi-Mg-O catalyzed SiC-foam absorber—was prepared, and its activity was tested in a laboratory-scale volumetric receiver-reactor with a transparent (quartz) window by using a sun-simulator. Compared to conventional RhAl2O3 catalyzed SiC-foam absorber, this new catalytic absorber is more cost effective and is found to exhibit a superior reaction performance at the high solar flux or at high temperatures, especially above 950°C. This new absorber will be applied in solar receiver-reactor systems for converting concentrated high solar fluxes to chemical fuels via endothermic natural-gas reforming at high temperatures.

1.
Kalogirou
,
A. S.
, 2004, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
0360-1285,
30
, pp.
231
295
.
2.
Mills
,
D.
, 2004, “
Advances in Solar Thermal Electricity Technology
,”
Sol. Energy
0038-092X,
76
, pp.
19
31
.
3.
Johnston
,
G.
,
Lovegrove
,
K.
,
Luzzi
,
A.
, 2003, “
Optical Performance of Spherical Reflecting Elements for Use With Paraboloidal Dish Concentrators
,”
Sol. Energy
0038-092X,
74
, pp.
133
140
.
4.
Fletcher
,
E. A.
, 1983/84, “
On the Thermodynamics of Solar Energy Use
,”
J. Minn. Acad. Soc.
,
49
(
2
), pp.
30
34
.
5.
Grasse
,
W.
,
Tyner
,
C. E.
, and
Steinfeld
,
A.
, 1999, “
International R & D Collaboration in Developing Solar Thermal Technologies for Electric Power and Solar Chemistry: The SolarPACES Program of the International Energy Agency (IEA)
,”
J. Phys. IV
1155-4339,
9
, pp.
Pr3
–17–
22
.
6.
Kodama
,
T.
, 2003, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
567
597
.
7.
Böhmer
,
M.
,
Langnickel
,
U.
, and
Sanchez
,
M.
, 1991, “
Solar Steam Reforming of Methane
,”
Sol. Energy Mater.
0165-1633,
24
, pp.
441
448
.
8.
Epstein
,
M.
,
Spiewak
,
I.
,
Segal
,
A.
,
Levy
,
I.
,
Lieberman
,
D.
,
Meri
,
M.
, and
Lerner
,
V.
, 1997, “
Solar Experiments With a Tubular Reformer
,”
Proc. of 8th International Symposium on Solar Thermal Concentrating Technology
,
Cologne
,
Germany
, 1996,
M.
Becker
and
M.
Böhmer
, eds.,
Muller
,
Heidelberg
,
3
, pp.
1209
1229
.
9.
Buck
,
R.
,
Muir
,
J. F.
, and
Hogan
,
R. E.
, 1991, “
Carbon Dioxide Reforming of Methane in a Solar Volumetric Receiver/Reactor: The CAESAR Project
,”
Sol. Energy Mater.
0165-1633,
24
, pp.
449
463
.
10.
Muir
,
J. F.
,
Hogan
,
Jr.
,
R.
,
E.
,
Skocypec
,
R. D.
, and
Buck
,
R.
, 1994, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: I—Test and Analysis
,”
Sol. Energy
0038-092X,
52
(
6
), pp.
467
477
.
11.
Skoypec
,
R. D.
,
Hogan
,
Jr.
,
R.
,
E.
, and
Muir
,
J. F.
, 1994, “
Solar Reforming of Methane in a Direct Absorption Catalytic Reactor on a Parabolic Dish: II—Modeling and Analysis
,”
Sol. Energy
0038-092X,
52
(
6
), pp.
479
490
.
12.
Buck
,
R.
,
Abele
,
M.
,
Bauer
,
H.
,
Seitz
,
A.
, and
Tamme
,
R.
, 1994, “
Development of a Volumetric Receiver-Reactor for Solar Methane Reforming
,”
ASME J. Sol. Energy Eng.
0199-6231,
116
, pp.
73
78
.
13.
Abele
,
M.
,
Bauer
,
H.
,
Buck
,
R.
,
Tamme
,
R.
, and
Wörner
,
A.
, 1996, “
Design and Test Results of a Receiver-Reactor for Solar Methane Reforming
,”
ASME J. Sol. Energy Eng.
0199-6231,
118
, pp.
339
346
.
14.
Wörner
,
A.
, and
Tamme
,
R.
, 1998, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-Reactor
,”
Catal. Today
0920-5861,
46
, pp.
165
174
.
15.
Dahl
,
J. K.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
,
Bingham
,
C.
,
Bruetsch
,
F.
, and
Steinfeld
,
A.
, 2004, “
Dry Reforming of Methane Using a Solar-Thermal Aerosol Flow Reactor
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
5489
5495
.
16.
Heller
,
P.
,
Pfänder
,
M.
,
Denk
,
T.
,
Tellez
,
F.
,
Valverde
,
A.
,
Fernandez
,
J.
, and
Ring
,
A.
, 2004 “
Test and Evaluation of a Solar Powered Gas Turbine System
,”
Proc. of 12th SolarPACES International Symposium Mexico
,
C.
,
Ramos
and
J.
,
Huacuz
, eds.,
Electrical Research Institute (IIE)
,
Mexico
, IIE paper No. S7–203.
17.
Sattler
,
C.
,
Roeb
,
M.
, and
Möller
,
S.
, 2004, “
Solar Hydrogen Production by Gas Reforming and Thermochemical Cycles—Recent Projects at DLR
,”
Proc. of 12th SolarPACES International Symposium Mexico
,
C.
,
Ramos
and
J.
,
Huacuz
, eds.,
Electrical Research Institute (IIE)
,
Mexico
, IIE Paper No S5-316.
18.
Berman
,
A.
and
Epstein
,
M.
, 1998, “
Ruthenium Catalysts for High Temperature Solar Reforming of Methane
,”
Hydrogen Power: Theoretical and Engineering Solutions. Proc. of HYPOTHESIS II Symposium
, (
Grimstad
,
Norway
, 1997),
T.
Saetre
, ed., p.
213
218
,
Kluwer, Dordrecht
,
Netherlands
.
19.
Gadalla
,
A.
, and
Sommer
,
M.
, 1989, “
Synthesis and Characterization of Catalysts in the System Al2O3-MgO-NiO-Ni for Methane Reforming With CO2
,”
J. Am. Ceram. Soc.
0002-7820,
72
(
4
), pp.
683
687
.
20.
Gadalla
,
A.
, and
Sommer
,
M.
, 1989, “
Carbon Dioxide Reforming of Methane on Nickel Catalysts
,”
Chem. Eng. Sci.
0009-2509,
44
(
12
), pp.
2825
2829
.
21.
Yamazaki
,
O.
,
Nozaki
,
T.
,
Omata
,
K.
, and
Fujimoto
,
K.
, 1992, “
Reduction of Carbon Dioxide by Methane With Ni-on-MgO–CaO Containing Catalyst
,”
Chem. Lett.
0366-7022,
1992
, pp.
1953
1954
.
22.
Takayasu
,
O.
,
Soman
,
C.
,
Takegahara
,
Y.
, and
Matsuura
,
I.
, 1994, “
Deactivation of Ni-catalyst and its prevention by mechanically mixing an oxide for the formation reaction of CO+H2 from CO2+CH4
,”
Stud. Surf. Sci. Catal.
0167-2991,
88
, pp.
281
288
.
23.
Choudhary
,
V.
,
Uphade
,
B.
, and
Mamman
,
A.
, 1995, “
Large Enhancement in Methane-to-Syngas Conversion Activity of Supported Ni Catalysts Due to Precoating of Catalyst Supports With MgO, CaO or Rare-Earth Oxide
,”
Catal. Lett.
1011-372X,
32
,
387
390
.
24.
Gronchi
,
P.
,
Fumagalli
,
D.
, Del
Rosso
,
R.
, and
Centola
,
P.
, 1996, “
Carbon Deposition in Methane Reforming With Carbon Dioxide: Dry Reforming
,”
J. Therm. Anal.
0368-4466,
47
, pp.
227
234
.
25.
Hariuchi
,
T.
,
Sakuma
,
K.
,
Fukui
,
T.
,
Kubo
,
Y.
,
Osaki
,
T.
, and
Mori
,
T.
, 1996, “
Suppression of Carbon Deposition in the CO2-Reforming of CH4 by Adding Basic Metal Oxide to a Ni∕Al2O3 Catalyst
,”
Appl. Catal., A
0926-860X,
144
, pp.
111
120
.
26.
Hu
,
Y-H.
, and
Ruckenstein
,
E.
, 1997, “
The Characterization of a Highly Effective NiO∕MgO Solid Solution Catalyst in the CO2 reforming of CH4
,”
Catal. Lett.
1011-372X,
43
, pp.
71
77
.
27.
Tomishige
,
K.
,
Yamazaki
,
O.
,
Chen
,
Y.
,
Yokoyama
,
K.
,
Li
,
X.
, and
Fujimoto
,
K.
, 1998, “
Development of Ultra-Stable Ni Catalysts for CO2 Reforming of Methane
,”
Catal. Today
0920-5861,
45
, pp.
35
39
.
28.
Choudhary
,
V.
, and
Mamman
,
A.
, 2000, “
Energy Efficient Conversion of Methane to Syngas Over NiO–MgO Solid Solution
,”
Appl. Energy
0306-2619,
66
, pp.
161
175
.
29.
Kodama
,
T.
,
Kiyama
,
A.
,
Moriyama
,
T.
,
Yokoyama
,
T.
,
Shimizu
,
K-I.
,
Andou
,
H.
, and
Satou
,
N.
, 2003, “
Ni–Mg–O Catalyst Driven by Direct Light Irradiation for Catalytically-Activated Foam Absorber in a Solar Reforming Receiver-Reactor
,”
Energy Fuels
0887-0624,
17
(
4
), pp.
914
921
.
You do not currently have access to this content.