A new method for characterization of shape-stabilized phase change materials (PCMs) based on one single sample and one single experimental device has been proposed. The simplicity of the experimental device is comparable to that of the T-history method: a cylinder of PCM, which is heated/cooled in a furnace following specific temperature patterns (steps, isotherms, and ramps). Instead of simple energy balances as in the T-history method, a numerical heat transfer model is used to retrieve the whole set of parameters/functions characterizing the PCM from temperature measurements at one single point within the PCM. A powerful inversion technique has been proposed for that. Its most striking feature is that it allows identification of enthalpy-temperature functions in an easy way. They are retrieved by solving a problem of time-dependent source estimation by inversion of a linear heat conduction model. It is shown that unknown sources are the output of a linear and invariant state model whose inputs are measured temperatures within the PCM. Enthalpy-temperature functions, as well as parameters derived from heat capacities, transition temperatures, and latent heat, are thus calculated in a simple way. An experimental test for characterization of graphite/salt composites has been carried out to illustrate the appropriateness of our developments.

1.
Klarsfeld
,
S.
, and
De Ponte
,
F.
, 2002, “
Conductivité thermique des isolants
,” Techniques de l’ingénieur, Traité Mesure et Contrôle, Paper No. R2930.
2.
Dégiovanni
,
A.
, 1977, “
Diffusivité et méthode flash
,”
Rev. Gen. Therm.
0035-3159,
185
, pp.
420
441
.
3.
Hay
,
B.
,
Filtz
,
J. R.
, and
Batsale
,
J. C.
, 2004, “
Mesure de la diffusivité thermique par la méthode flash
,” Techniques de l’ingénieur, Paper No. R2955.
4.
Log
,
T.
, and
Metallinoua
,
M. M.
, 1992, “
Thermal Conductivity Measurements Using a Short Transient Hot-Strip Method
,”
Rev. Sci. Instrum.
0034-6748,
63
(
8
), pp.
3966
3971
.
5.
Gustafsson
,
S. E.
, 1991, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
0034-6748,
62
(
3
), pp.
797
804
.
6.
Zhang
,
X.
, and
Dégiovanni
,
A.
, 1993, “
Mesure de l’effusivité thermique de matériaux solides et homogènes par une méthode de sonde plane
,”
J. Phys. III
1155-4320,
3
, pp.
1243
1265
.
7.
Zhang
,
X.
,
Dégiovanni
,
A.
, and
Maillet
,
D.
, 1993, “
Hot-Wire Measurement of Thermal Conductivity of Solids: A New Approach
,”
High Temp. - High Press.
0018-1544,
25
, pp.
577
584
.
8.
Diot
,
M.
, 1993, “
Capacités thermiques
,” Techniques de l’ingénieur, Paper No. R2970—1/12.
9.
Eyraud
,
C.
, and
Accary
,
A.
, 1992, “
Analyses thermique et calorimétrique différentielles
,” Techniques de l’ingénieur, Paper No. P1295_7.
10.
Richardson
,
M. J.
, 1997, “
Quantitative Aspects of Differential Scanning Calorimetry
,”
Thermochim. Acta
0040-6031,
300
, pp.
15
28
.
11.
Rudtsch
,
S.
, 2002, “
Uncertainty of Heat Capacity Measurements With Differential Scanning Calorimeters
,”
Thermochim. Acta
0040-6031,
382
, pp.
17
25
.
12.
Yinping
,
Z.
,
Yi
,
J.
, and
Yi
,
J.
, 1999, “
A Simple Method, the T-History Method, of Determining the Heat of Fusion, Specific Heat and Thermal Conductivity of Phase-Change Materials
,”
Meas. Sci. Technol.
0957-0233,
10
, pp.
201
205
.
13.
Hong
,
H.
,
Kim
,
S. K.
, and
Kim
,
Y.
, 2004, “
Accuracy Improvement of T-History Method for Measuring Heat of Fusion of Various Materials
,”
Int. J. Refrig.
0140-7007,
27
, pp.
360
366
.
14.
Lázaro
,
A.
,
Günther
,
E.
,
Mehling
,
H.
,
Hiebler
,
S.
,
Marín
,
J. M.
, and
Zalba
,
B.
, 2006, “
Verification of a T-History Installation to Measure Enthalpy Versus Temperature Curves of Phase Change Materials
,”
Meas. Sci. Technol.
0957-0233,
17
, pp.
2168
2174
.
15.
Günther
,
E.
,
Hiebler
,
S.
, and
Mehling
,
H.
, 2006, “
Determination of the Heat Storage Capacity of PCM and PCM-Objects as a Function of Temperature
,”
Proceedings of the Tenth International Conference of Thermal Energy Storage, Ecostock 2006
, NJ.
16.
Dauvergne
,
J. L.
, 2008, “
Réduction et inversion de modèles de diffusion thermique avec changement de phase
,” Ph.D. thesis, Université Bordeaux 1, Bordeaux.
17.
Morisson
,
V.
, 2008, “
Heat Transfer Modelling Within Graphite/Salt Composites: From the Pore Scale to the Thermal Energy Storage System
,” Ph.D. thesis, Université Bordeaux 1, Bordeaux.
18.
Py
,
X.
,
Olives
,
R.
, and
Mauran
,
S.
, 2001, “
Paraffin/Porous-Graphite Composite as a High and Constant Thermal Storage Material
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2727
2737
.
19.
Lopez
,
L.
, 2007, “
Nouveaux composites graphite/sel pour le stockage de l’énergie thermique à haute température. Etude des propriétés de changement de phase
,” Ph.D. thesis, Université Bordeaux 1, Bordeaux.
20.
Palomo del Barrio
,
E.
, 2003, “
Multidimensional Inverse Heat Conduction Problems Solution Via Lagrange Theory and Model Size Reduction Techniques
,”
Inverse Problems in Science and Engineering
,
11
(
6
), pp.
515
539
.
21.
Bryson
,
A. E.
, and
Ho
,
Y. C.
, 1975,
Applied Optimal Control
,
Hemisphere
,
New York
.
22.
Tammer
,
R.
, 2008, “
Energy Storage for Direct Steam Solar Power Plants
,” DISTOR Report No. SES6-CT-2004-503526.
23.
Palomo
,
E.
,
Acem
,
Z.
,
Boudenne
,
A.
,
Candau
,
Y.
,
Ibos,
L.
,
Lopez
,
J.
,
Morisson
,
V.
,
Olives
,
R.
,
Pincemin
,
S.
, and
Py
,
X.
, 2006, “
Matériaux graphite/sel pour le stockage d’énergie à haute temperature
,” HTP-STOCK Report No. PR6.6.
You do not currently have access to this content.