A new model is developed to predict hourly solar radiation for any climate zone worldwide. The model solar radiation predictions are suitable to generate typical weather files used to evaluate the long-term performance of renewable energy systems and building energy systems. The predictions of the new solar model are compared as well as measured solar radiation data obtained for several weather stations located in various climate zones worldwide. It is found that the new solar model is able to estimate monthly solar radiation with a 7% prediction error for secondary stations and 2% prediction error for primary stations.

References

1.
Marion
,
W.
, and
Urban
,
K.
, 1995,
Users Manual for TMY2s Typical Meteorological Years
,
National Renewable Energy Laboratory
,
Golden, CO
.
2.
Maxwell
,
E. L.
, 1998, “
METSTAT—The Solar Irradiance Model Used in the Production of the National Solar Irradiance Data Base (NSRDB)
,”
Sol. Energy
,
62
, pp.
263
279
.
3.
Zhang
,
Q. Y.
, and
Huang
,
Y. J.
, 2002, “
Development of Typical Year Weather Files for Chinese Locations, LBNL–51436
,”
ASHRAE Trans.
,
108
(
Pt. 2
), pp.
1063
1075
.
4.
Krarti
,
M.
, and
Seo
,
D.
, 2006, “
Comparative Analysis of Three Solar Models for Tunis
,”
ASHRAE Trans.
,
112
(
Pt. 1
), pp.
42
53
.
5.
Seo
,
D.
, and
Krarti
,
M.
, 2007, “
Comparative Analysis of Four Solar Models for Tropical Sites
,”
ASHRAE Trans.
,
113
(
Pt. 1
), pp.
514
522
.
6.
Kottek
,
M.
,
Grieser
,
J.
,
Beck
,
C.
,
Rudolf
,
B.
, and
Rubel
,
F.
, 2006, “
World Map of Köppen-Geiger Climate Classification Updated
,”
Meteorol. Z.
,
15
, pp.
259
263
.
7.
Davies
,
J. A.
, and
McKay
D. C.
, 1982, “
Estimating Solar Irradiance and Components
,”
Sol. Energy
,
29
, pp.
55
64
.
8.
Bird
,
R. E.
, and
Hulstrom
,
R. L.
, 1981, “
A Simplified Clear Sky Model for Direct and Diffuse Insolation on Horizontal Surfaces
,”
Solar Energy Research Institute (NREL)
,
Golden, CO
, Report No. SERI/TR–642–761. Available online at http://rredc.nrel.gov/solar/models/clearsky/.
9.
Iqbal
M.
, 1983,
An Introduction to Solar Irradiance
,
Toronto
,
Academic
.
10.
ASHRAE
, 1999,
ASHRAE Handbook: HVAC Applications
,
ASHRAE
,
Atlanta, GA
.
11.
Tarpley
,
J. D.
, 1979, “
Estimating Incident Solar Irradiance at the Surface From Geostationary Satellite Data
,”
J. Appl. Meteorol.
,
18
, pp.
1172
1181
.
12.
Gautier
,
C. M.
,
Diak
,
G.
, and
Masse
,
S.
, 1980, “
A Simple Physical Model to Estimate Incident Solar Irradiance at the Surface From GOES Satellite Data
,”
J. Appl. Meteorol.
,
19
, pp.
1005
1012
.
13.
Pinker
,
R. T.
, and
Ewing
,
J. A.
, 1985, “
Modelling Surface Solar Irradiance: Model Formulation and Validation
,”
J. Appl. Meteorol.
,
24
, pp.
389
401
.
14.
Cano
,
D.
,
Monget
,
J.
,
Albuisson
,
M.
,
Guillard
,
H.
,
Regas
,
N.
, and
Wald
,
L.
, 1986,
A Method for the Determination of the Global Solar Irradiance From Meteorological Satellite Data
,”
Sol. Energy
,
37
, pp.
31
39
.
15.
Mueller
,
R. W.
, 2004, “
Rethinking Satellite-Based Solar Irradiance Modeling: The SOLIS Clear-Sky Module
,”
Remote Sens. Environ.
,
91
, pp.
160
174
.
16.
Heliosat –3, 2000, “Energy Specific Solar Irradiance Data From Meteosat Second Generation (MSG),” Project NNE5–2000–00413.
17.
Mayer
,
B.
, and
Kylling
,
A.
, 2005, “
The libRadtran Software Package for Radiative Transfer Calculations: Description and Examples of Use
,”
Atmos. Chem. Phys.
,
5
, pp.
1855
1877
.
18.
Perez
,
R.
,
Seals
,
R.
, and
Zelenka
,
A.
, 1997, “
Comparing Satellite Remote Sensing and Ground Network Measurements for the Production of Site/Time Specific Irradiance Data
,”
Sol. Energy
,
60
, pp.
89
96
.
19.
Schmetz
,
J.
, 1989, “
Towards a Surface Irradiance Climatology: Retrieval of Downward Irradiances From Satellites
,”
Atmos. Res.
,
23
, pp.
287
321
.
20.
Kasten
,
F.
, 1983, “
A Simple Parameterization of Two Pyrheliometric Formulae for Determining the Linke Turbidity Factor
,”
Meteorol. Rundsch
,
33
, pp.
124
127
.
21.
Perez
,
R.
,
Ineichen
,
P.
,
Maxwell
,
E.
,
Seals
,
R.
and
Zelenka
,
A.
, 1992, “
Dynamic Global-to-Direct Irradiance Conversion Models
,”
ASHRAE Trans. – Res. Ser.
,
98
, pp.
354
369
.
22.
Pinker
,
R. T.
, and
Laszlo
,
I.
, 1992, “
Modeling Surface Solar Irradiance for Satellite Application on a Global Scale
,”
J. Appl. Meteorol.
,
31
, pp.
194
211
.
23.
Kasten
,
F.
, and
Czeplak
,
G.
, 1980, “
Solar and Terrestrial Irradiance Dependent on the Amount and Type of Cloud Solar Energy
,”
24
(
2
), pp.
177
189
.
24.
Gul
,
M. S.
,
Muneer
,
T.
, and
Kambezidis
,
H. D.
, 1998, “
Models for Obtaining Solar Irradiance Data for Other Meteorological Data
,”
Sol. Energy
,
64
(
1–3
), pp.
98
108
.
25.
Bristow
,
K. L.
, and
Campbell
,
G. S.
, 1984, “
On the Relationship Between Incoming Solar Irradiance and Daily Maximum and Minimum Temperature
,”
Agric. Forest Meteorol.
,
31
(
2
), pp.
159
166
.
26.
Bechini
,
L.
,
Ducco
,
G.
,
Donatelli
,
M.
, and
Stein
,
A.
, 2000, “
Modelling, Interpolation and Stochastic Simulation in Space and Time of Global Solar Irradiance
,”
Agric., Ecosyst. Environ.
,
81
(
1,2
), pp.
29
42
.
27.
Revfeim
,
K. J. A.
, 1981, “
Estimating Solar Irradiance Income From ‘Bright’ Sunshine Records
,”
Q. J. R. Meteorol. Soc.
,
107
, pp.
427
435
.
28.
Andretta
,
A.
,
Bartoli
,
B.
,
Coluzzi
,
B.
,
Cuomo
,
V.
,
Francesca
,
M.
, and
Serio
,
C.
, 1982, “
Global Solar Irradiance Estimation From Relative Sunshine Hours in Italy
,”
J. Appl. Meteorol.
,
21
, pp.
1377
.
29.
Reddy
,
S. J.
, 1987, “
The Estimation of Global Solar Irradiance and Evaporation Through Precipitation—A Note
,”
Sol. Energy
,
38
(
2
), pp.
97
104
.
30.
Rao
,
C. R. N.
, and
Bradley
,
W. A.
, 1983, “
Estimation of the Daily Global Solar Irradiance at Corvallis, Oregon (U.S.A.) From the Hours of Bright Sunshine, the Daily Temperature Range and Relative Humidity
,”
J. Climatol.
,
3
, p.
179
.
31.
Winslow
,
J. C.
,
Hunt
,
E. R.
Jr.
, and
Piper
,
S. C.
, 2001, “
A Globally Applicable Model of Daily Solar Irradiance Estimated From Air Temperature and Precipitation Data
,”
Ecol. Modell.
,
143
(
3
), pp.
227
243
.
32.
Zhang
,
Q. Y.
,
Huang
,
Y. J.
, and
Siwei
,
L.
, 2001, “Development of Chinese Weather Data for Building Energy Calculations,” Proc. 4th International Conference on IAQ, Ventilation and Energy Conservation in Buildings, pp. 1121–1128.
33.
Gordon
,
J. M.
, and
Reddy
,
T.A.
, 1988, “
Time Series Analysis of Daily Horizontal Solar Radiation
,”
Sol. Energy
,
41
, pp.
215
226
.
34.
Gordon
,
J. M.
, and
Reddy
,
T. A.
, 1988, “
Time Series Analysis of Hourly Global Horizontal Solar Radiation
,”
Sol. Energy
,
41
, pp.
423
429
.
35.
Aguiar
,
R.
, and
Collares-Pereira
,
M.
, 1992, “
TAG: A Time-Dependent Auto-Regressive, Gaussian Model
,”
Sol. Energy
,
49
, pp.
167
174
.
36.
Meteotest, 2009, METEONORM version 6.1, Global Meteorological DataBase, Bern, Switzerland. Tool can be downloaded from http:www.meteonorm.com.
37.
Seo
,
D.
,
Huang
,
J.
, and
Krarti
,
M.
, 2009, “
Evaluation of Typical Weather Year Selection Approaches
,”
ASHRAE Trans.
,
115
(
Pt. 2
), pp.
654
667
.
38.
Seo
,
D.
,
Huang
,
J.
, and
Krarti
,
M.
, 2010, “
Impact of Typical Weather Year Selection Approaches on Energy Analysis of Buildings
,”
ASHRAE Trans.
,
116
(
Pt. 1
), pp.
350
359
.
39.
Rahman
,
I. A.
, and
Dewsbury
,
J.
, 2007, “
Selection of Typical Weather Data (Test Reference Years) for Subang, Malaysia
,”
Build. Environ.
,
42
(
10
), pp.
3636
3641
.
40.
National Climatic Data Center (NCDC), 2003, “Data Documentation for Data Set 3505 (DSI–3505),” Integrated Surface Hourly Data, Asheville, NC.
41.
Seo
,
D.
,
Huang
,
J.
, and
Krarti
,
M.
, 2008, “
Development of Models for Hourly Solar Irradiance Prediction
,”
ASHRAE Trans.
,
114
(
Pt. 1
), pp.
392
403
.
You do not currently have access to this content.