A transient three-dimensional heat transfer model is developed for a 3 kWth solar thermochemical reactor for H2O and CO2 splitting via two-step nonstoichiometric ceria cycling. The reactor consists of a windowed solar receiver cavity, counter-rotating reactive and inert cylinders, and insulated reactor walls. The counter-rotating cylinders allow for continuous fuel production and heat recovery. The model is developed to solve energy conservation equations accounting for conduction, convection, and radiation heat transfer modes, and chemical reactions. Radiative heat transfer is analyzed using a combination of the Monte Carlo ray-tracing method, the net radiation method, and the Rosseland diffusion approximation. Steady-state temperatures, heat fluxes, and nonstoichiometry are reported. A temperature swing of up to 401 K, heat recovery effectiveness of up to 95%, and solar-to-fuel efficiency of up to 5% are predicted in parametric studies.

References

1.
Steinfeld
,
A.
, and
Palumbo
,
R.
,
2001
, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science & Technology
,
R. A.
Meyers
, ed.,
Academic
,
Burlington
, VT, Vol.
15
, pp.
237
256
.
2.
Kodama
,
T.
,
2003
, “
High-Temperature Solar Chemistry for Converting Solar Heat to Chemical Fuels
,”
Prog. Energy Combust. Sci.
,
29
(
6
), pp.
567
597
.10.1016/S0360-1285(03)00059-5
3.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
(
5
), pp.
467
475
.10.1016/0038-092X(77)90102-5
4.
Diver
,
R. B.
,
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Siegel
,
N. P.
, and
Hogan
,
R. E.
,
2008
, “
Solar Thermochemical Water-Splitting Ferrite-Cycle Heat Engines
,”
ASME J. Sol. Energy Eng.
,
130
(
4
), p.
041001
.10.1115/1.2969781
5.
Miller
,
J. E.
,
Allendorf
,
M. D.
,
Diver
,
R. B.
,
Evans
,
L. R.
,
Siegel
,
N. P.
, and
Stuecker
J. N.
,
2008
, “
Metal Oxide Composites and Structures for Ultra-High Temperature Solar Thermochemical Cycles
,”
J. Mater. Sci.
,
43
(
14
), pp.
4714
4728
.10.1007/s10853-007-2354-7
6.
Kodama
,
T.
,
Nakamuro
,
Y.
, and
Mizuno
,
T.
,
2006
, “
A Two-Step Thermochemical Water Splitting by Iron-Oxide on Stabilized Zirconia
,”
ASME J. Sol. Energy Eng.
,
128
(
1
), pp.
3
7
.10.1115/1.1878852
7.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.10.1016/j.solener.2005.12.005
8.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc., A
,
368
(
1923
), pp.
3269
3294
.10.1098/rsta.2010.0114
9.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
,
2010
, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
(
15
), pp.
4163
4173
.10.1007/s10853-010-4506-4
10.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.10.1126/science.1197834
11.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
,
2007
, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
,
21
(
4
), pp.
2287
2293
.10.1021/ef060581z
12.
Venstrom
,
L. J.
,
Petkovich
,
N.
,
Rudisill
,
S.
,
Stein
,
A.
, and
Davidson
,
J. H.
,
2011
, “
The Effect of Morphology on the Oxidation of Ceria by Water and Carbon Dioxide
,”
ASME J. Solar Energy Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005119
13.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2009
, “
Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane From H2O and CO2
,”
ChemSusChem
,
2
(
8
), pp.
735
739
.10.1002/cssc.200900138
14.
Petkovich
,
N. D.
,
Rudisill
,
S. G.
,
Venstrom
,
L. J.
,
Boman
,
D. B.
,
Davidson
,
J. H.
, and
Stein
,
A.
,
2011
, “
Control of Heterogeneity in Nanostructured Ce1−xZrxO2 Binary Oxides for Enhanced Thermal Stability and Water Splitting Activity
,”
J. Phys. Chem. C
,
115
(
43
), pp.
21022
21033
.10.1021/jp2071315
15.
Kaneko
,
H.
,
Taku
,
S.
, and
Tamaura
,
Y.
,
2011
, “
Reduction Reactivity of CeO2–ZrO2 Oxide Under High O2 Partial Pressure in Two-Step Water Splitting Process
,”
Sol. Energy
,
85
(
9
), pp.
2321
2330
.10.1016/j.solener.2011.06.019
16.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.10.1016/0022-3697(75)90192-4
17.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
, pp.
6098
6103
.10.1039/c1ee02620h
18.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.10.1021/ef3013757
19.
Roeb
,
M.
,
Säck
,
J.-P.
,
Rietbrock
,
P.
,
Prahl
,
C.
,
Schreiber
,
H.
,
Neises
,
M.
,
de Oliveira
,
L.
,
Graf
,
D.
,
Ebert
,
M.
,
Reinalter
,
W.
,
Meyer-Grünefeldt
,
M.
,
Sattler
,
C.
,
Lopez
,
A.
,
Vidal
,
A.
,
Elsberg
,
A.
,
Stobbe
,
P.
,
Jones
,
D.
,
Steele
,
A.
,
Lorentzou
,
S.
,
Pagkoura
,
C.
,
Zygogianni
,
A.
,
Agrafiotis
,
C.
, and
Konstandopoulos
,
A. G.
,
2011
, “
Test Operation of a 100 kW Pilot Plant for Solar Hydrogen Production From Water on a Solar Tower
,”
Sol. Energy
,
85
(
4
), pp.
634
644
.10.1016/j.solener.2010.04.014
20.
Chen
,
K. S.
, and
Hogan
,
R. E.
,
2009
, “
A Two-Phase Model for Solar Thermochemical Water Splitting with FeO/Fe3O4
,”
ASME 2009 International Conference of Energy Sustainability (ES2009)
, San Francisco, CA, July 19–23,
ASME
Paper No. ES2009-90228.10.1115/ES2009-90228
21.
James
,
D. L.
,
Siegel
,
N. P.
,
Diver
,
R. B.
,
Boughton
,
B. D.
, and
Hogan
,
R. E.
,
2006
, “
Numerical Modeling of Solar Thermo-Chemical Water-Splitting Reactor
,”
ASME International Solar Energy Conference (ISEC2006)
, Denver, CO, July 8–13,
ASME
Paper No. ISEC2006-99141.10.1115/ISEC2006-99141
22.
Chen
,
K. S.
, and
Hogan
,
R. E.
, “
Modeling Solar Thermochemical Splitting of CO2 Using Metal Oxide and a CR5
,”
ASME 2010 International Conference of Energy Sustainability (ES2010)
, Phoenix, AZ, May 17–20,
ASME
Paper No. ES2010-90436.10.1115/ES2010-90436
23.
Hogan
,
R. E.
,
Miller
,
J. E.
,
James
,
D. L.
,
Chen
,
K. S.
, and
Diver
,
R. B.
,
2012
, “
Modeling Chemical and Thermal States of Reactive Metal Oxides in a CR5 Solar Thermochemical Heat Engine
,”
ASME 2012 International Conference on Energy Sustainability (ES2012)
, San Diego, CA, July 23–26,
ASME
Paper No. ES2012-91490.10.1115/ES2012-91490
24.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
.10.1016/j.energy.2011.10.045
25.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Heat Transfer Analysis of a Solid-Solid Heat Recuperation System for Solar-Driven Nonstoichiometric Redox Cycles
,”
ASME J. Solar Energy Eng.
,
135
(
3
),
p
.
031004
.10.1115/1.4023357
26.
Liang
,
Z.
,
Chueh
,
W. C.
,
Ganesan
,
K.
,
Haile
,
S. M.
, and
Lipiński
,
W.
,
2011
, “
Experimental Determination of Transmittance of Porous Cerium Dioxide Media in the Spectral Range of 300–1100 nm
,”
Exp. Heat Transfer
,
24
(
4
), pp.
285
299
.10.1080/08916152.2010.542876
27.
Chekhovskoy
, V
.
, and
Stavrovsky
,
G.
,
1970
, “
Thermal Conductivity of Cerium Dioxide
,”
9th Conference on Thermal Conductivity
, Ames, IA, October 6–8, 1969, pp.
295
298
.
28.
Binnewies
,
M.
, and
Milke
,
E.
,
1999
,
Thermochemical Data of Elements and Compounds
,
Wiley
,
New York
.
29.
Touloukian
,
Y. S.
,
1967
,
Thermophysical Properties of High Temperature Solid Materials
, Vol.
4
,
Macmillan
,
New York
, pp.
8
47
.
30.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables, Parts 1 and 2, 4th ed.
,
J. Phys. Chem. Ref. Data
, Monograph No. 9, American Institute of Physics, Woodbury, NY.
31.
Zircar Ceramics Inc.
,
2001
, “
Rigid Alumina Products
,” from http://www.zircarceramics.com/pages/rigidmaterials/aluminaproducts.htm
32.
Ganesan
,
K.
, and
Lipiński
,
W.
,
2011
, “
Experimental Determination of Spectral Transmittance of Porous Cerium Dioxide in the Range 900–1700 nm
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104501
.10.1115/1.4003970
33.
Ganesan
,
K.
,
Dombrovsky
,
L. A.
, and
Lipiński
,
W.
,
2013
, “
Visible and Near-Infrared Optical Properties of Ceria Ceramics
,”
Infrared Phys. Technol.
,
57
, pp.
101
109
.10.1016/j.infrared.2012.12.040
34.
Sarou-Kanian
,
V.
,
Rifflet
,
J. C.
, and
Millot
,
F.
,
2005
, “
IR Radiative Properties of Solid and Liquid Alumina: Effects of Temperature and Gaseous Environment
,”
Int. J. Thermophys.
,
26
(
4
), pp.
1263
1275
.10.1007/s10765-005-6725-5
35.
Rosseland
,
S.
,
1936
,
Theoretical Astrophysics; Atomic Theory and the Analysis of Stellar Atmospheres and Envelopes
,
Clarendon
,
Oxford, UK
.
36.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic
,
San Diego
.
37.
Dombrovsky
,
L. A.
,
2012
, “
The Use of Transport Approximation and Diffusion-Based Models in Radiative Transfer Calculations
,”
Comput. Therm. Sci.
,
4
, pp.
297
315
.10.1615/ComputThermalScien.2012005050
38.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1983
,
Absorption and Scattering of Light by Small Particles
,
John Wiley & Sons
,
New York
.
39.
Marabelli
,
F.
, and
Wachter
,
P.
,
1987
, “
Covalent Insulator CeO2: Optical Reflectivity Measurements
,”
Phys. Rev. B
,
36
(
2
), pp.
1238
1243
.10.1103/PhysRevB.36.1238
40.
Dombrovsky
,
L. A.
,
Ganesan
,
K.
, and
Lipiński
,
W.
,
2012
, “
Combined Two-Flux Approximation and Monte Carlo Model for Identification of Radiative Properties of Highly Scattering Dispersed Materials
,”
Comput. Therm. Sci.
,
4
(
4
), pp.
365
378
.10.1615/ComputThermalScien.2012005025
You do not currently have access to this content.