The objective of the present work is to conduct a worthwhile experimental study of the performance of a parabolic solar concentrator for solar cooking. The literature survey briefly highlights the standard performance tests of solar cookers and gives the experimental studies obtained by some authors. Our experimental device, made from simple means using local materials, consists of a parabolic concentrator having a 0.80 m diameter and 0.08 m depth as well as a cylindrical absorber with a 0.10 m diameter and is 0.20 m long. The testing period started on April 24th, 2014 and continued till July 10th of the same year, in Rabat (33°53′ N, 6°59′ W), Morocco. The average ambient temperature is 24 °C. The results show that using synthetic oil as the heat transfer medium has achieved a maximum temperature of 153 °C against 97 °C with water. The overall heat loss coefficient is estimated to be 17.6 W m−2  °C−1. The energy and exergy efficiencies are, respectively, 29.0–2.4% and 0.1–0.5%. Adding a glass cover on the front face of the absorber improved the maximum temperature by 15 °C. Automatic two-axis sun tracking system also increased the maximum temperature by 13 °C compared to manual tracking system.

References

1.
ASDER
,
2012
, “
Solar Cookers—Technical Presentation
,” Savoyard Association for the Development of Renewable Energies, Chambéry, France, http://www.asder.asso.fr/phocadownload/cuiseur%20solaire.pdf
2.
Schwarzer
,
K.
,
2004
, “
Experience With Solar Cookers in Different Countries
,” PPT Presentation, Solar-Institute Julich, Solar-Global,
IBEU
, Germany.
3.
CDER
,
2008
, “
Wood Energy Synthesis Report in Morocco
,” Energy Efficiency Program, Renewable Energies Development Center, Marrakech, Morocco, http://www.ffem.fr/webdav/site/ffem/shared/ELEMENTS_COMMUNS/U_ADMINISTRATEUR/5-PUBLICATIONS/Changement_climatique/Plaquette_Maroc_Bois_energie_juillet08.pdf
4.
IEA
,
2014
, “
Energy Policies Morocco—Annual Report
,” International Energy Agency, Paris, France, https://www.iea.org/publications/freepublications/publication/Maroc2014.pdf
5.
Muthusivagami
,
R. M.
,
Verlaj
,
R.
, and
Sethumadhavan
,
R.
,
2010
, “
Solar Cookers With and Without Thermal Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
691
701
.
6.
APREKH
,
2007
, “Solar Cookers,” Asia-Pacific Renewable Energy Knowledge Hub, Manila, Philippines, http://www.aprekh.org/solarcooking.pdf
7.
Mussard
,
M.
,
2013
, “
A Solar Concentrator With Heat Storage and Self-Circulating Liquid
,”
Ph.D. thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
8.
Sedighi
,
M.
, and
Zakariapour
,
M.
,
2014
, “
A Review of Direct and Indirect Solar Cookers
,”
Sustainable Energy
,
2
(
2
), pp.
44
51
.
9.
Robinson
,
T.
,
2010
, “
Characterization and Design Methods of Solar Cookers & Ovens
,” Department of Mechanical and Manufacturing Engineering at Trinity College Dublin, Dublin Ireland, https://www.tcd.ie/Engineering/undergraduate/pdf/2E9_SolarCookerLecture.pdf
10.
Kassem
,
T. K.
, and
Youssef
,
M. S.
,
2011
, “
Solar Cookers and Its Application for Food Cooking in Remote Areas: Review
,”
J. Eng. Sci., Assiut Univ.
,
39
(
5
), pp.
1033
1042
.
11.
Funk
,
P. A.
,
2000
, “
Evaluating the International Standard Procedure for Testing Solar Cookers and Reporting Performance
,”
Sol. Energy
,
68
(
1
), pp.
1
7
.
12.
Mullick
,
S. C.
,
Kandpal
,
T. C.
, and
Saxena
,
A. K.
,
1987
, “
Thermal Test Procedure for Box-Type Solar Cookers
,”
Sol. Energy
,
39
(
4
), pp.
353
360
.
13.
ECSCR
,
1994
, “
Solar Cooker Test Procedure
,” Version 3, European Committee on Solar Cooking Research, Eschborn, Germany.
14.
Shaw
,
S.
,
2002
, “
Development of a Comparative Framework for Evaluating the Performance of Solar Cooking Devices
,”
Ph.D. thesis
, Rensselaer Polytechnic Institute, Troy, NY.
15.
Kundapur
,
A.
, and
Sudhir
,
C. V.
,
2009
, “
Proposal for New World Standard for Testing Solar Cookers
,”
J. Eng. Sci. Technol.
,
4
(
3
), pp.
272
281
.
16.
Funk
,
P. A.
, and
Larson
,
D. L.
,
1998
, “
Parametric Model of Solar Cooker Performance
,”
Sol. Energy
,
62
(
1
), pp.
63
68
.
17.
Patel
,
N. V.
, and
Philip
,
S. K.
,
2000
, “
Performance Evaluation of Three Solar Concentrating Cookers
,”
Renewable Energy
,
20
(
3
), pp.
347
355
.
18.
Kumar
,
S.
,
Kandpal
,
T. C.
, and
Mullick
,
S. C.
,
1993
, “
Heat Loses From a Paraboloid Concentrator Solar Cooker: Experimental Investigation on Effect Reflector Orientation
,”
Renewable Energy
,
3
(
8
), pp.
871
876
.
19.
Suple
,
Y. R.
, and
Thombre
,
S. B.
,
2013
, “
Performance Evaluation of Parabolic Solar Disc for Indoor Cooking
,”
J. Mech. Civ. Eng.
,
4
(
6
), pp.
42
47
.
20.
Dafle
,
V. R.
, and
Shinde
,
N. N.
,
2012
, “
Design, Development & Performance Evaluation of Concentrating Monoaxial Scheffler Technology for Water Heating and Low Temperature Industrial Steam Application
,”
Int. J. Eng. Res. Appl.
,
2
(
6
), pp.
1179
1186
.
21.
Mohammed
,
I. L.
,
2013
, “
Design and Development of a Parabolic Dish Solar Thermal Cooker
,”
Int. J. Eng. Res. Appl.
,
3
(
4
), pp.
1179
1186
.
22.
Yahya
,
D. D.
,
2013
, “
Experimental Investigations of Heat Losses From a Parabolic Concentrator Solar Cooker
,”
Afr. J. Eng. Res.
,
1
(
3
), pp.
90
96
.
23.
Kumar
,
N.
,
Vishwanath
,
G.
, and
Gupta
,
A.
,
2012
, “
An Exergy Based Unified Test Protocol for Solar Cookers of Different Geometries
,”
Renewable Energy
,
44
, pp.
457
462
.
24.
Aidan
,
J.
,
2014
, “
Performance Evaluation of a Parabolic Solar Dish Cooker in Yola, Nigeria
,”
J. Appl. Phys.
,
6
(
5
), pp.
46
50
.
25.
Ondiaka
,
M. N.
,
Lwande
,
W.
,
Omulokoli
,
E.
,
Ochola
,
J. B.
,
Ndenga
,
E. A.
,
Kilwake
,
M. L.
,
Nyamamba
,
I. N.
,
Watai
,
K. M.
,
Salehe
,
J.
,
Kimaru
,
E.
, and
Thoruwa
,
T. F. N.
,
2011
, “
Evaluation of Solar Energy for Processing Aloe Secundiflora Sap Into Paste Using Parabolic Solar Concentrating Technology
,”
Open Renewable Energy J.
,
4
, pp.
93
103
.
26.
Shukla
,
S. K.
,
2009
, “
Comparison of Energy and Exergy Efficiency of Community and Domestic Type Parabolic Solar Cookers
,”
Int. J. Green Energy
,
6
(
5
), pp.
437
449
.
27.
Okafor
,
B. E.
,
2013
, “
Performance Evaluation of a Parabolic Solar Cooker
,”
Int. J. Eng. Technol.
,
3
(
10
), pp.
923
927
.
28.
Kalbande
,
S. R.
,
Mathur
,
A. N.
,
Kothari
,
S.
, and
Pawar
,
S. N.
,
2007
, “
Design, Development and Testing of Paraboloidal Solar Cooker
,”
Karnataka J. Agric. Sci.
,
20
(
3
), pp.
571
574
.
29.
Arenas
,
J. M.
,
2007
, “
Design, Development and Testing of a Portable Parabolic Solar Kitchen
,”
Renewable Energy
,
32
(
2
), pp.
257
266
.
30.
Gavisiddesha
,
S. P.
,
Revankar
,
P. P.
, and
Gorawar
,
M. B.
,
2011
, “
Evaluation of Thermal Performance of Paraboloid Concentrator Solar Cooker
,”
Int. J. Innovative Res. Technol. Sci.
,
1
(
3
), pp.
58
65
.
31.
Ozturk
,
H. H.
,
2004
, “
Experimental Determination of Energy and Exergy Efficiency of Solar Parabolic-Cooker
,”
Sol. Energy
,
77
(
1
), pp.
67
71
.
32.
Petela
,
R.
,
2005
, “
Exergy Analysis of the Solar Cylindrical-Parabolic Cooker
,”
Sol. Energy
,
79
(
3
), pp.
221
233
.
33.
Panwar
,
N. L.
,
Kaushik
,
S. C.
, and
Kothari
,
S.
,
2012
, “
Experimental Investigation of Energy and Exergy Efficiencies of Domestic Size Parabolic Dish Solar Cooker
,”
J. Renewable Sustainable Energy
,
4
(
2
), p.
023111
.
34.
Kaushik
,
S. C.
, and
Gupta
,
M. K.
,
2008
, “
Energy and Exergy Efficiency Comparison of Community-Size and Domestic-Size Paraboloidal Solar Cooker Performance
,”
Energy Sustainable Dev.
,
12
(
3
), pp.
60
64
.
35.
Kimambo
,
C. Z. M.
,
2007
, “
Development and Performance Testing of Solar Cookers
,”
J. Energy South. Afr.
,
18
(
3
), pp.
41
51
.
36.
Abdallah
,
E.
,
Al-Soud
,
M.
,
Akayleh
,
A.
, and
Abdallah
,
S.
,
2010
, “
Cylindrical Solar Cooker With Automatic Two Axes Sun Tracking System
,”
Jordan J. Mech. Ind. Eng.
,
4
(
4
), pp.
477
486
.
37.
Mahdi
,
K.
, and
Bellel
,
N.
,
2014
, “
Development of a Spherical Solar Collector With a Cylindrical Receiver
,”
Energy Procedia
,
52
, pp.
438
448
.
38.
Habeebullah
,
M.
,
Khalifa
,
A.
, and
Olwi
,
I.
,
1995
, “
The Oven Receiver: An Approach Toward the Revival of Concentrating Solar Cookers
,”
Sol. Energy
,
54
(
4
), pp.
227
237
.
39.
Krishnan
,
V. K.
, and
Balusamy
,
T.
,
2015
, “
Simulation Studies on Concentrating Type Solar Cookers
,”
Int. J. Mech. Aerosp. Ind. Mechatronic Manuf. Eng.
,
9
(
6
), pp.
1089
1093
.
40.
Prasanna
,
U. R.
, and
Umanand
,
L.
,
2011
, “
Modeling and Design of a Solar Thermal System for Hybrid Cooking Application
,”
Appl. Energy
,
88
(
5
), pp.
1740
1755
.
41.
Sharma
,
U.
,
Dixit
,
V.
, and
Mahindru
,
D. V.
,
2013
, “
Latent Heat Storage System: A Panacea to Address Energy Needs
,”
Global J. Sci. Front. Res. Phys. Space Sci.
,
13
(
5
), pp.
33
43
.
42.
Abinaya
,
S. J. P.
, and
Rajakumar
,
S.
,
2013
, “
Performance of PCM and Cooking Vessel in Solar Cooking System
,”
Int. J. Eng. Invent.
,
2
(
6
), pp.
83
89
.
43.
Saxena
,
A.
,
Lath
,
S.
, and
Tirth
,
V.
,
2013
, “
Solar Cooking by Using PCM as a Thermal Heat Storage
,”
MIT Int. J. Mech. Eng.
,
3
(
2
), pp.
91
95
.
44.
Lecuona
,
A.
,
Nogueira
,
J. I.
,
Ventas
,
R.
,
Rodríguez-Hidalgo
,
M. D. C.
, and
Legrand
,
M.
,
2013
, “
Solar Cooker of the Portable Parabolic Type Incorporating Heat Storage Based on PCM
,”
Appl. Energy
,
111
, pp.
1136
1146
.
45.
Cuce
,
E.
, and
Cuce
,
P. M.
,
2013
, “
A Comprehensive Review on Solar Cookers
,”
Appl. Energy
,
102
, pp.
1399
1421
.
46.
Zeghib
,
I.
,
2005
, “
Design and Construction of a Parabolic Solar Concentrator
,” Master's thesis, Universite of Mentouri, Constantine, Algeria.
47.
Newton
,
C. C.
,
2006
, “
A Concentrated Solar Thermal Energy System
,”
Master's thesis
, Florida State University, Tallahassee, FL.
48.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
49.
Rabl
,
A.
,
1976
, “
Comparison of Solar Concentrators
,”
Sol. Energy
,
18
(
2
), pp.
93
111
.
You do not currently have access to this content.