A solar radiation model is applied to a low temperature water-in-glass evacuated tubes solar collector to predict its performance via computational fluid dynamics (CFD) numerical simulations. This approach allows obtaining the transmitted, reflected, and absorbed solar radiation flux and the solar heat flux on the surface of the evacuated tubes according to the geographical location, the date, and the hour of a day. Different environmental and operational conditions were used to obtain the outlet temperature of the solar collector; these results were validated against four experimental tests based on an Official Mexican Standard resulting in relative errors between 0.8% and 2.6%. Once the model is validated, two cases for the solar collector were studied: (i) different mass flow rates under a constant solar radiation and (ii) different solar radiation (due to the hour of the day) under a constant mass flow rate to predict its performance and efficiency. For the first case, it was found that the outlet temperature decreases as the mass flow rate increases reaching a steady value for a mass flow rate of 0.1 kg/s (6 l/min), while for the second case, the results showed a corresponding outlet temperature behavior to the solar radiation intensity reaching to a maximum temperature of 36.5 °C at 14:00 h. The CFD numerical study using a solar radiation model is more realistic than the previous reported works leading to overcome a gap in the knowledge of the low temperature evacuated tube solar collectors.

References

1.
Mazarron
,
F. R.
,
Porras-Prieto
,
C. J.
,
Garcia
,
J. L.
, and
Benavente
,
R. M.
,
2016
, “
Feasibility of Active Solar Water Heating Systems With Evacuated Tube Collector at Different Operational Water Temperatures
,”
Energy Convers. Manage.
,
113
, pp.
16
26
.
2.
Sabiha
,
M. A.
,
Saidur
,
R.
,
Mekhilef
,
S.
, and
Mahian
,
O.
,
2015
, “
Progress and Latest Developments of Evacuated Tube Solar Collectors
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
1038
1054
.
3.
Wiser
,
R.
,
Millstein
,
D.
,
Mai
,
T.
,
Macknick
,
J.
,
Carpenter
,
A.
,
Cohen
,
S.
,
Cole
,
W.
,
Frew
,
B.
, and
Heath
,
G.
,
2016
, “
The Environmental and Public Health Benefits of Achieving High Penetrations of Solar Energy in the United States
,”
Energy
,
113
, pp.
472
486
.
4.
Jebasingh
,
V. K.
, and
Herbert
,
G. M. J.
,
2016
, “
A Review of Solar Parabolic Trough Collector
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1085
1091
.
5.
Alemán-Nava
,
G. S.
,
Casiano-Flores
,
V. H.
,
Cárdenas-Chávez
,
D. L.
,
Díaz-Chavez
,
R.
,
Scarlat
,
N.
,
Mahlknecht
,
J.
,
Dallemand
,
J.-F.
, and
Parra
,
R.
,
2014
, “
Renewable Energy Research Progress in Mexico: A Review
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
140
153
.
6.
Kalogirou
,
S. A.
,
2014
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
, San Diego, CA.
7.
Morrison, G. L., Budihardjo, I., and Behnia, M., 2004, “
Water-in-Glass Evacuated Tube Solar Water Heaters
,”
Sol. Energy
,
45
(4), p. 272.
8.
Daghigh
,
R.
, and
Shafieian
,
A.
,
2016
, “
Theoretical and Experimental Analysis of Thermal Performance of a Solar Water Heating System With Evacuated Tube Heat Pipe Collector
,”
Appl. Therm. Eng.
,
103
, pp.
1219
1227
.
9.
Recalde
,
C.
,
Cisneros
,
C.
,
Avila
,
C.
,
Logroño
,
W.
, and
Recalde
,
M.
,
2015
, “
Single Phase Natural Circulation Flow Through Solar Evacuated Tubes Collectors on the Equatorial Zone
,”
Energy Procedia
,
75
, pp.
467
472
.
10.
Rybár
,
R.
,
Beer
,
M.
, and
Cehlár
,
M.
,
2016
, “
Thermal Power Measurement of the Novel Evacuated Tube Solar Collector and Conventional Solar Collector During Simultaneous Operation
,”
Meas. J. Int. Meas. Confed.
,
88
, pp.
153
164
.
11.
Zhao
,
C.
,
You
,
S.
,
Wei
,
L.
,
Gao
,
H.
, and
Yu
,
W.
,
2016
, “
Theoretical and Experimental Study of the Heat Transfer Inside a Horizontal Evacuated Tube
,”
Sol. Energy
,
132
, pp.
363
372
.
12.
Bracamonte
,
J.
,
Parada
,
J.
,
Dimas
,
J.
, and
Baritto
,
M.
,
2015
, “
Effect of the Collector Tilt Angle on Thermal Efficiency and Stratification of Passive Water in Glass Evacuated Tube Solar Water Heater
,”
Appl. Energy
,
155
, pp.
648
659
.
13.
Tang
,
R.
, and
Yang
,
Y.
,
2014
, “
Nocturnal Reverse Flow in Water-in-Glass Evacuated Tube Solar Water Heaters
,”
Energy Convers. Manage.
,
80
, pp.
173
177
.
14.
Al-Abidi
,
A. A.
,
Mat
,
S.
,
Sopian
,
K.
,
Sulaiman
,
M. Y.
, and
Mohammad
,
A. T.
,
2014
, “
Experimental Study of Melting and Solidification of PCM in a Triplex Tube Heat Exchanger With Fins
,”
Energy Build.
,
68
(
Part A
), pp.
33
41
.
15.
Chaabane
,
M.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2014
, “
Thermal Performance of an Integrated Collector Storage Solar Water Heater (ICSSWH) With Phase Change Materials (PCM)
,”
Energy Convers. Manage.
,
78
, pp.
897
903
.
16.
Feliński
,
P.
, and
Sekret
,
R.
,
2016
, “
Experimental Study of Evacuated Tube Collector/Storage System Containing Paraffin as a PCM
,”
Energy
,
114
, pp.
1063
1072
.
17.
Waheed
,
A. B.
,
Buchholz
,
R.
,
Lou
,
Y.
, and
Ziegler
,
F.
,
2012
, “
CFD Based Analysis of Flow Distribution in a Coaxial Vacuum Tube Solar Collector With Laminar Flow Conditions
,”
Int. J. Energy Environ. Eng.
,
3
(
1
), p.
24
.
18.
Yao
,
K.
,
Li
,
T.
,
Tao
,
H.
,
Wei
,
J.
, and
Feng
,
K.
,
2015
, “
Performance Evaluation of All-Glass Evacuated Tube Solar Water Heater With Twist Tape Inserts Using CFD
,”
Energy Procedia
,
70
, pp.
332
339
.
19.
Farjallah
,
R.
,
Chaabane
,
M.
,
Mhiri
,
H.
,
Bournot
,
P.
, and
Dhaouadi
,
H.
,
2016
, “
Thermal Performance of the U-Tube Solar Collector Using Computational Fluid Dynamics Simulation
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061008
.
20.
Alfaro-Ayala
,
J. A.
,
Martínez-Rodríguez
,
G.
,
Picón-Núñez
,
M.
,
Uribe-Ramírez
,
A. R.
, and
Gallegos-Muñoz
,
A.
,
2015
, “
Numerical Study of a Low Temperature Water-in-Glass Evacuated Tube Solar Collector
,”
Energy Convers. Manage.
,
94
, pp.
472
481
.
21.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2013
, “
Heat Transfer Analysis and Numerical Simulation of a Parabolic Trough Solar Collector
,”
Appl. Energy
,
111
, pp.
581
592
.
22.
Cheng
,
Z.-D.
,
He
,
Y.-L.
,
Du
,
B.-C.
,
Wang
,
K.
, and
Liang
,
Q.
,
2015
, “
Geometric Optimization on Optical Performance of Parabolic Trough Solar Collector Systems Using Particle Swarm Optimization Algorithm
,”
Appl. Energy
,
148
, pp.
282
293
.
23.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüc
,
M. P.
,
2012
,
Thermal Radiation Heat Transfer
,
CRC Press
, Boca Raton, FL.
24.
ASHRAE
,
2009
,
ASHRAE Handbook: Fundamentals
,
American Society of Heating, Refrigeration and Air-Conditioning Engineers
, Atlanta, GA.
25.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
26.
ANSYS
,
2013
, “
ANSYS FLUENT 13 User's Guide, ANSYS Fluent Theory Guide
,” ANSYS Inc., Canonsburg, PA.
27.
He
,
Q.
,
Zeng
,
S.
, and
Wang
,
S.
,
2014
, “
Experimental Investigation on the Efficiency of Flat-Plate Solar Collectors With Nanofluids
,”
Appl. Therm. Eng.
,
88
, pp.
165
171
.
28.
Xu
,
X.
,
Wang
,
X.
,
Li
,
P.
,
Li
,
Y.
,
Hao
,
Q.
,
Xiao
,
B.
,
Elsentriecy
,
H.
, and
Gervasio
,
D.
,
2018
, “
Experimental Test of Properties of KCl-MgCl2 Eutectic Molten Salt for Heat Transfer and Thermal Storage Fluid in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
9
.
You do not currently have access to this content.