Abstract

This paper presents a two-dimensional (2D) transient numerical model for simulating the vapor deposition process for growing perovskite films. The diffusion process of methylammonium iodide (MAI) vapor through the processing chamber to react with the lead iodide (PbI2) substrate and grow the perovskite layer is analyzed with a diffusion coefficient that has been determined by measuring thicknesses of perovskite layers grown in a chemical vapor deposition (CVD) chamber. Innovations applied to the CVD chamber to improve the uniformity of layer thickness and offer control over the growth process are applied and computationally assessed. One is the addition of screens at various strategic locations in the chamber to improve flow uniformity. Another is changing the locations of MAI sublimation bowls and chamber outlet numbers and locations. The results show that adding screens makes the MAI vapor flow more uniform in the plenum while allowing a quicker purge of the N2 inert gas. This leads to a higher and more uniform growth rate of perovskite. The MAI vapor flow is influenced by the reaction plenum geometry, so the chamber is expected to allow good control of the process to achieve uniform surface deposition rate and controlled grain growth of the perovskite layer.

References

1.
Akihiro
,
K.
,
Kenjiro
,
T.
,
Yasuo
,
S.
, and
Tsutomu
,
M.
,
2009
, “
Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
,”
J. Am. Chem. Soc.
,
131
(
17
), pp.
6050
6051
. 10.1021/ja809598r
2.
The National Renewable Energy Laboratory (NREL)
,
2019
, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
3.
Wojciechowski
,
K.
,
Saliba
,
M.
,
Leijtens
,
T.
,
Abate
,
A.
, and
Snaith
,
H. J.
,
2014
, “
Sub-150 °C Processed Meso-Superstructured Perovskite Solar Cells With Enhanced Efficiency
,”
Energy Environ. Sci.
,
7
(
3
), pp.
1142
1147
. 10.1039/C3EE43707H
4.
Ray
,
R.
,
Sarker
,
A. S.
, and
Pal
,
S. K.
,
2019
, “
Improving Performance and Moisture Stability of Perovskite Solar Cells Through Interface Engineering With Polymer-2D MoS2 Nanohybrid
,”
Sol. Energy
,
193
, pp.
95
101
. 10.1016/j.solener.2019.09.055
5.
Wang
,
J. T.
,
Ball
,
J. M.
,
Barea
,
E. M.
,
Abate
,
A.
,
Alexander-Webber
,
J. A.
,
Huang
,
J.
,
Saliba
,
M.
,
Mora-Sero
,
I.
,
Bisquert
,
J.
,
Snaith
,
H. J.
, and
Nicholas
,
R. J.
,
2013
, “
Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells
,”
Nano Lett.
,
14
(
2
), pp.
724
730
. 10.1021/nl403997a
6.
Duan
,
J.
,
Wu
,
J.
,
Zhang
,
J.
,
Xu
,
Y.
, and
Lund
,
P. D.
,
2016
, “
TiO2/ZnO/TiO2 Sandwich Multilayer Films as a Hole-Blocking Layer for Efficient Perovskite Solar Cells
,”
Int. J. Energy Res.
,
40
(
6
), pp.
806
813
. 10.1002/er.3485
7.
Yang
,
L.
,
Yang
,
P.
,
Wang
,
J.
,
Hao
,
Y.
,
Li
,
Y.
,
Lin
,
H.
, and
Zhao
,
X.
,
2019
, “
Low-Temperature Preparation of Crystallized Graphite Nanofibers for High Performance Perovskite Solar Cells
,”
Sol. Energy
,
193
, pp.
205
211
. 10.1016/j.solener.2019.09.065
8.
Ying
,
C.
,
Shi
,
C.
,
Wu
,
N.
,
Zhang
,
J.
, and
Wang
,
M.
,
2015
, “
A Two-Layer Structured pbi2 Thin Film for Efficient Planar Perovskite Solar Cells
,”
Nanoscale
,
7
(
28
), pp.
12092
12095
. 10.1039/C5NR03511B
9.
Li
,
Y. B.
,
Cooper
,
J. K.
,
Buonsanti
,
R.
,
Giannini
,
C.
,
Liu
,
Y.
,
Toma
,
F. M.
, and
Sharp
,
I. D.
,
2015
, “
Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing
,”
J. Phys. Chem. Lett.
,
6
(
3
), pp.
493
499
. 10.1021/jz502720a
10.
Subbiah
,
A. S.
,
Halder
,
A.
,
Ghosh
,
S.
,
Mahuli
,
N.
,
Hodes
,
G.
, and
Sarkar
,
S. K.
,
2014
, “
Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells
,”
J. Phys. Chem. Lett.
,
5
(
10
), pp.
1748
1753
. 10.1021/jz500645n
11.
Kim
,
B. S.
,
Kim
,
T. M.
,
Choi
,
M. S.
,
Shim
,
H. S.
, and
Kim
,
J. J.
,
2015
, “
Fully Vacuum–Processed Perovskite Solar Cells With High Open Circuit Voltage Using MoO3/NPB as Hole Extraction Layers
,”
Org. Electron.
,
17
, pp.
102
106
. 10.1016/j.orgel.2014.12.002
12.
Zhao
,
D.
,
Ke
,
W.
,
Grice
,
C. R.
,
Cimaroli
,
A. J.
,
Tan
,
X.
,
Yang
,
M.
,
Collins
,
R. W.
,
Zhang
,
H.
,
Zhu
,
K.
, and
Yan
,
Y.
,
2015
, “
Annealing-Free Efficient Vacuum-Deposited Planar Perovskite Solar Cells With Evaporated Fullerenes as Electron-Selective Layers
,”
Nano Energy
,
19
, pp.
88
97
. 10.1016/j.nanoen.2015.11.008
13.
Chen
,
Q.
,
Zhou
,
H.
,
Hong
,
Z.
,
Luo
,
S.
,
Duan
,
H. S.
,
Wang
,
H. H.
,
Liu
,
Y.
,
Li
,
G.
, and
Yang
,
Y.
,
2014
, “
Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process
,”
J. Am. Chem. Soc.
,
136
(
2
), pp.
622
625
. 10.1021/ja411509g
14.
Chen
,
Q.
,
Zhou
,
H.
,
Song
,
T. B.
,
Luo
,
S.
,
Hong
,
Z.
,
Duan
,
H. S.
,
Dou
,
L.
,
Liu
,
Y.
, and
Yang
,
Y.
,
2014
, “
Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites Toward High Performance Solar Cells
,”
Nano Lett.
,
14
(
7
), pp.
4158
4163
. 10.1021/nl501838y
15.
Zhou
,
H.
,
Chen
,
Q.
, and
Yang
,
Y.
,
2015
, “
Vapor-Assisted Solution Process for Perovskite Materials and Solar Cells
,”
MRS Bull.
,
40
(
8
), pp.
667
673
. 10.1557/mrs.2015.171
16.
Wang
,
S.
,
Ono
,
L. K.
,
Leyden
,
M. R.
,
Kato
,
Y.
,
Raga
,
S. R.
,
Lee
,
M. V.
, and
Qi
,
Y. B.
,
2015
, “
Smooth Perovskite Thin Films and Efficient Perovskite Solar Cells Prepared by the Hybrid Deposition Method
,”
J. Mater. Chem. A
,
3
(
28
), pp.
14631
14641
. 10.1039/C5TA03593G
17.
Leyden
,
M. R.
,
Ono
,
L. K.
,
Raga
,
S. R.
,
Kato
,
Y.
,
Wang
,
S.
, and
Qi
,
Y.
,
2014
, “
High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition
,”
J. Mater. Chem. A
,
2
(
44
), pp.
18742
18745
. 10.1039/C4TA04385E
18.
Leyden
,
M. R.
,
Lee
,
M. V.
,
Raga
,
S. R.
, and
Qi
,
Y. B.
,
2015
, “
Large Formamidinium Lead Trihalide Perovskite Solar Cells Using Chemical Vapor Deposition With High Reproducibility and Tunable Chlorine Concentrations
,”
J. Mater. Chem. A
,
3
(
31
), pp.
16097
16103
. 10.1039/C5TA03577E
19.
Peng
,
Y.
,
Jing
,
G.
, and
Cui
,
T.
,
2015
, “
A Hybrid Physical-Chemical Deposition Process at Ultra-Low Temperatures for High-Performance Perovskite
,”
J. Mater. Chem. A
,
3
(
23
), pp.
12436
12442
. 10.1039/C5TA01730K
20.
Wehrenfennig
,
C.
,
Liu
,
M.
,
Snaith
,
H. J.
,
Johnston
,
M. B.
, and
Herz
,
L. M.
,
2014
, “
Charge-Carrier Dynamics in Vapour-Deposited Films of the Organolead Halide Perovskite CH3NH3PbI3-XClx
,”
Energy Environ. Sci.
,
7
(
7
), pp.
2269
2275
. 10.1039/C4EE01358A
21.
Jeon
,
N. J.
,
Noh
,
J. H.
,
Kim
,
Y. C.
,
Yang
,
W. S.
,
Ryu
,
S.
, and
Seok
,
S. I.
,
2014
, “
Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells
,”
Nat. Mater.
,
13
(
9
), pp.
897
903
. 10.1038/nmat4014
22.
Agrafiotis
,
C.
,
Pein
,
M.
,
Giasafaki
,
D.
,
Tescari
,
S.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Redox Oxides-Based Solar Thermochemistry and Its Materialization to Reactor/Heat Exchanger Concepts for Efficient Solar Energy Harvesting, Transformation and Storage
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021010
. 10.1115/1.4042226
23.
Udayabhaskararao
,
T.
,
Kazes
,
M.
,
Houben
,
L.
,
Lin
,
H.
, and
Oron
,
D.
,
2017
, “
Nucleation, Growth, and Structural Transformations of Perovskite Nanocrystals
,”
Chem. Mater.
,
29
(
3
), pp.
1302
1308
. 10.1021/acs.chemmater.6b04841
24.
Xue
,
H.
,
Bergirsson
,
E.
, and
Stangl
,
R.
,
2019
, “
Correlating Variability of Modeling Parameters With Photovoltaic Performance: Monte Carlo Simulation of a Meso-Structured Perovskite Solar Cell
,”
Appl. Energy
,
237
, pp.
131
144
. 10.1016/j.apenergy.2018.12.066
25.
Yang
,
C.
,
Simon
,
T.
, and
Cui
,
T.
,
2017
, “
Numerical Simulation and Analysis of Hybrid Physical-Chemical Vapor Deposition to Grow Uniform Perovskite MAPbI3
,”
J. Appl. Phys.
,
121
(
14
), pp.
1989
1997
.
26.
Arivazhagan
,
V.
,
Xie
,
J.
,
Yang
,
Z.
,
Hanga
,
P.
,
Parvathia
,
M. M.
,
Xiao
,
K.
,
Cui
,
C.
,
Yang
,
D.
, and
Yu
,
X.
,
2019
, “
Vacuum Co-Deposited CH3NH3PbI3 Films by Controlling Vapor Pressure for Efficient Planar Perovskite Solar Cells
,”
Sol. Energy
,
181
, pp.
339
344
. 10.1016/j.solener.2019.02.012
27.
Joback
,
K. G.
, and
Reid
,
R. C.
,
1987
, “
Estimation of Pure-Component Properties From Group-Contributions
,”
Chem. Eng. Commun.
,
57
(
1
), pp.
233
243
. 10.1080/00986448708960487
28.
Curtiss
,
C. F.
,
Hirschfelder
,
J. O.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
John Wiley & Sons
,
New York
.
29.
Onoda-Yamamuro
,
N.
,
Matsuo
,
T.
, and
Suga
,
H.
,
1992
, “
Dielectric Study of CH3NH3Pbx3 (x = Cl, Br, I)
,”
J. Phys. Chem. Solids
,
53
(
7
), pp.
935
939
. 10.1016/0022-3697(92)90121-S
30.
Idel’chik
,
I. E.
, and
Steinberg
,
M. O.
,
1996
,
Handbook of Hydraulic Resistance
, 4th ed.,
Begell House
,
New York
.
31.
Wang
,
B.
,
Young Wong
,
K.
,
Xiao
,
X.
, and
Chen
,
T.
,
2015
, “
Elucidating the Reaction Pathways in the Synthesis of Organolead Trihalide Perovskite for High-Performance Solar Cells
,”
Sci. Rep.
,
5
(
1
), p.
10557
. 10.1038/srep10557
32.
Wei
,
X.
,
Peng
,
Y.
,
Jing
,
G.
, and
Cui
,
T.
,
2018
, “
Planar Structured Perovskite Solar Cells by Hybrid Physical Chemical Vapor Deposition With Optimized Perovskite Film Thickness
,”
Jpn. J. Appl. Phys.
,
57
(
5
), p.
052301
. 10.7567/JJAP.57.052301
You do not currently have access to this content.