Abstract

This study investigates the energy extraction mechanism by means of swing arm turbine. The swing arm turbines have a particular motion pattern. The pure translation motion in the conventional flapping turbine changes based on the swing arm rotation. The laminar flow around a NACA0015 is resolved using computational fluid dynamics (CFD) method. The turbine blades are equipped with an oscillating gurney flap for trying to boost the system efficiency. The connected gurney flap oscillates with a given pitching angle. A user-defined function and the sliding dynamic mesh technique available in ansys fluent version 15 are used to adjust both the blade and the flap positions during the turbine flapping cycle. The effects of the swing factor and the flap length on the system performance are provided. It is shown that the suggested strategy of control is able to alter the pressure distribution during both the up stroke and down stroke phases, which changes the blade aerodynamic forces during all the flapping cycle portions and therefore improving the turbine efficiency.

References

1.
Kinsey
,
T.
, and
Dumas
,
G.
,
2008
, “
Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime
,”
AIAA J.
,
46
(
6
), pp.
1318
1330
. 10.2514/1.26253
2.
Ashraf
,
M. A.
,
Young
,
J.
,
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
2011
, “
Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator
,”
AIAA J.
,
49
(
7
), pp.
1374
1386
. 10.2514/1.J050577
3.
Wu
,
J.
,
Chen
,
Y.
,
Zhao
,
N.
, and
Wang
,
T.
,
2016
, “
Influence of Stroke Deviation on the Power Extraction Performance of a Fully-Active Flapping Foil
,”
Renewable Energy J.
,
94
(
1
), pp.
440
451
. 10.1016/j.renene.2016.03.100
4.
Wang
,
Y.
,
Sun
,
X.
,
Huang
,
D.
, and
Zheng
,
Z.
,
2016
, “
Numerical Investigation on Energy Extraction of Flapping Hydrofoils With Different Series Foil Shapes
,”
J. Energy
,
112
, pp.
1153
1168
. 10.1016/j.energy.2016.06.092
5.
Teng
,
L.
,
Deng
,
J.
,
Pan
,
D.
, and
Shao
,
X.
,
2016
, “
Effects of Non-Sinusoidal Pitching Motion on Energy Extraction Performance of a Semi-Active Flapping Foil
,”
Renewable Energy J.
,
85
(
1
), pp.
810
818
. 10.1016/j.renene.2015.07.037
6.
McKinney
,
W.
, and
DeLaurier
,
J.
,
1981
, “
Wingmill: An Oscillating-Wing Windmill
,”
J. Energy
,
5
(
2
), pp.
109
115
. 10.2514/3.62510
7.
Rodríguez-Hidalgo
,
M. C.
,
Rodríguez-Aumente
,
P. A.
,
Lecuona
,
A.
,
Gutiérrez-Urueta
,
G. L.
, and
Ventas
,
R.
,
2011
, “
Flat Plate Thermal Solar Collector Efficiency: Transient Behavior Under Working Conditions. Part I: Model Description and Experimental Validation
,”
Appl. Thermal Eng. J.
,
31
(
14–15
), pp.
2394
2404
. 10.1016/j.applthermaleng.2011.04.003
8.
Bait
,
O.
,
2019
, “
Exergy, Environ–Economic and Economic Analyses of a Tubular Solar Water Heater Assisted Solar Still
,”
J. Cleaner Prod.
,
212
(
1
), pp.
630
646
. 10.1016/j.jclepro.2018.12.015
9.
Xiao
,
Q.
,
Liao
,
W.
,
Yang
,
S.
, and
Peng
,
Y.
,
2012
, “
How Motion Trajectory Affects Energy Extraction Performance of a Bio mimic Energy Generator With an Oscillating Foil
,”
Renewable Energy J.
,
37
(
1
), pp.
61
75
. 10.1016/j.renene.2011.05.029
10.
Jones
,
K. D.
,
Lindsey
,
K.
, and
Platzer
,
M. F.
,
2003
, “An Investigation of the Fluid-Structure Interaction in an Oscillating-Wing Micro-Hydropower Generator,”
Fluid Structure Interaction
, 2nd ed.,
C. A.
Brebbia
,
D.
Almorza
, and
R.
Gonzalez-Palma
, eds.,
WIT Press
,
Southampton, UK
, pp.
73
82
.
11.
Liu
,
W.
,
Xiao
,
Q.
, and
Cheng
,
F.
,
2013
, “
A Bio-Inspired Study on Tidal Energy Extraction With Flexible Flapping Wings
,”
Bioinspiration Biomimetics J.
,
8
(
3
), p.
36011
. 10.1088/1748-3182/8/3/036011
12.
Hoke
,
C. M.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2015
, “
Effects of Time-Varying Camber Deformation on Flapping Foil Propulsion and Power Extraction
,”
J. Fluids Struct.
,
56
(
1
), pp.
152
176
. 10.1016/j.jfluidstructs.2015.05.001
13.
Wu
,
J.
,
Wu
,
J.
,
Tian
,
F.-B.
,
Zhao
,
N.
, and
Li
,
Y.-D.
,
2015
, “
How a Flexible Tail Improves the Power Extraction Efficiency of a Semi-Activated Flapping Foil System: A Numerical Study
,”
J. Fluids Struct.
,
54
(
1
), pp.
886
899
. 10.1016/j.jfluidstructs.2015.02.006
14.
He
,
X.
,
Wang
,
J.
,
Yang
,
M.
,
Ma
,
D.
,
Yan
,
C.
, and
Liu
,
P.
,
2016
, “
Numerical Simulation of Gurney Flap on SFYT15thick Airfoil
,”
Theoretical Appl. Mech. Lett. J.
,
6
(
6
), pp.
286
292
. 10.1016/j.taml.2016.09.002
15.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Di Rosa
,
D.
, and
Ferrara
,
G.
,
2019
, “
On the Use of Gurney Flaps for the Aerodynamic Performance Augmentation of Darrieus Wind Turbines
,”
Energy Convers. Manage. J.
,
184
(
1
), pp.
402
415
. 10.1016/j.enconman.2019.01.068
16.
Zhu
,
H.
,
Hao
,
W.
,
Li
,
C.
, and
Ding
,
Q.
,
2019
, “
Numerical Study of Effect of Solidity on Vertical Axis Wind Turbine With Gurney Flap
,”
J. Wind Eng. Ind. Aerodyn.
,
186
(
1
), pp.
17
31
. 10.1016/j.jweia.2018.12.016
17.
Chen
,
D.
,
Dong
,
H. A. N.
, and
Lei
,
Y. U.
,
2018
, “
Performance Analysis of Variable Speed Tail Rotors With Gurney Flaps
,”
Chinese J. Aeronaut.
,
31
(
11
), pp.
2104
2110
. 10.1016/j.cja.2018.07.012
18.
Wang
,
J. J.
,
Li
,
Y. C.
, and
Choi
,
K.-S.
,
2008
, “
Gurney Flap—Lift Enhancement, Mechanisms and Applications
,”
Progress Aerosp. Sci. J.
,
44
(
1
), pp.
22
47
. 10.1016/j.paerosci.2007.10.001
19.
Myose
,
R.
,
Papadakis
,
M.
, and
Heron
,
I.
,
1998
, “
Gurney Flap Experiments on Airfoils, Wings, and Reflection Plane Model
,”
J. Aircraft
,
35
(
2
), pp.
206
211
. 10.2514/2.2309
20.
Li
,
Y.
,
Wang
,
J.
, and
Zhang
,
P.
,
2002
, “
Effects of Gurney Flaps on a NACA0012 Airfoil
,”
Flow Turbulence Combustion J.
,
68
(
1
), pp.
27
39
. 10.1023/A:1015679408150
21.
Liu
,
T.
, and
Montefort
,
J.
,
2007
, “
Thin-Airfoil Theoretical Interpretation for Gurney Flap Lift Enhancement
,”
J. Aircraft
,
44
(
2
), pp.
667
671
. 10.2514/1.27680
22.
Zhu
,
B.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
Energy Harvesting Properties of a Flapping Wing With an Adaptive Gurney Flap
,”
Energy J.
,
152
(
1
), pp.
119
128
. 10.1016/j.energy.2018.03.142
23.
Bouzaher
,
M. T.
,
Drias
,
N.
, and
Guerira
,
B.
,
2019
, “
Improvement of Energy Extraction Efficiency for Flapping Airfoils by Using Oscillating Gurney Flaps
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
809
819
. 10.1007/s13369-018-3270-7
You do not currently have access to this content.