Abstract

The objectives of this work carried out in the Central African Republic are to propose new correlations between the components of solar radiation and the sunshine duration on a horizontal surface on the ground, and then to make an evaluation of the solar potential in the cities of Bambari, Birao, and Bangui. Polynomial regression models were used and their parameters were estimated by the ordinary least-squares method. A statistical evaluation allowed us to compare the performance of the models. The best correlations are then used to estimate the global and diffuse radiation. In the city of Birao, the estimated global radiation is around 6 kW h/m2 j and the diffuse radiation is around 2 kW h/m2 j; in Bambari, the global radiation is around 5.4 kW h/m2 j and the diffuse is around 2.3 kW h/m2 j; in Bangui, the global radiation is around 5 kW h/m2 j and the diffuse radiation is around 2.3 kW h/m2 j. The potential solar in all these regions is very favorable for small- and large-scale solar photovoltaic applications.

References

1.
Babikir
,
M. H.
,
Njomo
,
D.
,
Barka
,
M.
,
Chara-Dackou
,
V. S.
,
Kondji
,
Y. S.
, and
Khayal
,
M. Y.
,
2021
, “
Thermal Modelling of a Parabolic Trough Collector in a Quasi-Steady State Regime
,”
J. Renew. Sustain. Energy
,
13
(
1
), p.
013703
.
2.
Babikir
,
M. H.
,
Chara-Dackou
,
V. S.
,
Njomo
,
D.
,
Barka
,
M.
,
Khayal
,
M. Y.
,
Kamta Legue
,
D. R.
, and
Gram Shou
,
J. P.
,
2020
, “
Simplified Modeling and Simulation of Electricity Production From a Dish/Stirling System
,”
Int. J. Photoenergy.
3.
Njomo
,
D.
, and
Daguenet
,
M.
,
2006
, “
Sensitivity Analysis of Thermal Performances of Flat Plate Solar Air Heaters
,”
Heat Mass Transfer
,
42
(
12
), pp.
1065
1081
.
4.
Angstrom
,
A.
,
1924
, “
Solar and Terrestrial Radiation
,”
Q. J. R. Metereol. Soc.
,
50
(
210
), pp.
121
126
.
5.
Almorox
,
J.
,
Benito
,
M.
, and
Hontoria
,
C.
,
2005
, “
Estimation of Monthly Angstrom-Prescott Equation Coefficients From Measured Daily Data in Toledo, Spain
,”
Renew. Energy
,
30
(
6
), pp.
931
936
.
6.
Ekren
,
O.
,
2013
, “
Developing and Evaluation of Various Correlations for Diffuse Solar Radiation for Urla (Izmir, Turkey)
,”
ASME J. Sol. Energy Eng.
,
135
(
2
), p.
021001
.
7.
Kean Yap
,
W.
, and
Karri
,
V.
,
2012
, “
Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
034501
.
8.
Benson
,
R. B.
,
Paris
,
M. V.
,
Sherry
,
J. E.
, and
Justus
,
C. G.
,
1984
, “
Estimation of Daily and Monthly Direct, Diffuse and Global Solar Radiation From Sunshine Duration Measurements
,”
Sol. Energy
,
32
(
4
), pp.
523
535
.
9.
Suehrcke
,
H.
,
2000
, “
On the Relationship Between Duration of Sunshine and Solar Radiation on the Earth’s Surface: Angstrom’s Equation Revisited
,”
Sol. Energy
,
68
(
5
), pp.
417
425
.
10.
Michalsky
,
J. J.
,
1992
, “
Comparison of a National Weather Service Foster Sunshine Recorder and the World Meteorological Organization Standard for Sunshine Duration
,”
Sol. Energy
,
48
(
2
), pp.
133
141
.
11.
Aras
,
H.
,
Balli
,
O.
, and
Hepbasli
,
A.
,
2006
, “
Estimating the Horizontal Diffuse Solar Radiation Over the Central Anatolia Region of Turkey
,”
Energy Convers. Manage.
,
47
(
15–16
), pp.
2240
2249
.
12.
Pandey
,
C. K.
, and
Katiyar
,
A. K.
,
2013
, “
A Review of Solar Radiation Models—Part I
,”
J. Renew. Energy
,
2013
.
13.
Chandel
,
S. S.
,
Aggarwal
,
R. K.
, and
Pandey
,
A. N.
,
2005
, “
New Correlation to Estimate Global Solar Radiation on Horizontal Surfaces Using Sunshine Hour and Temperature Data for Indian Sites
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
417
420
.
14.
Rietveld
,
M. R.
,
1978
, “
A New Method for Estimating the Regression Coefficients in the Formula Relating Solar Radiation to Sunshine
,”
Agric. Meteorol.
,
19
(
2–3
), pp.
243
252
.
15.
Turton
,
S. M.
,
1987
, “
The Relationship Between Total Irradiation and Sunshine Duration in the Humid Tropics
,”
Sol. Energy
,
38
(
5
), pp.
353
354
.
16.
Antonioletti
,
R.
,
1994
, “
Estimation Régionale du Rayonnement Solaire Global Dans le Chili Aride et Semi-Aride
,”
Revue de Géographie Alpine, Tome
,
82
(
1
), pp.
61
70
.
17.
Njomo
,
D.
,
1989
, “
Modélisation des Variations Mensuelles de L’irradiation Solaire Reçue au Cameroun
,”
Model. Simul. Control
,
18
(
1
), pp.
39
64
.
18.
Ulgen
,
K.
, and
Hepbasli
,
A.
,
2009
, “
Diffuse Solar Radiation Estimation Models for Turkey’s Big Cities
,”
Energy Convers. Manage.
,
50
(
1
), pp.
149
156
.
19.
Mbiaké
,
R.
,
Wakata
,
A. B.
,
Mfoumou
,
E.
,
Ndjeuna
,
E.
,
Fotso
,
L.
,
Tiekwe
,
E.
,
Kaze Djamen
,
J. R.
, and
Bobda
,
C.
,
2018
, “
The Relationship Between Global Solar Radiation and Sunshine Durations in Cameroon
,”
Open J. Air Pollut.
,
7
(
2
), pp.
107
119
.
20.
Naim
,
H.
,
Fares
,
R.
,
Bouadi
,
A.
,
Hassini
,
A.
, and
Noureddine
,
B.
,
2020
, “
An Improved Model of Estimation Global Solar Irradiation From in Situ Data: Case of Algerian Oranie’S Region
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
034501
.
21.
Elhadidy
,
M. A.
, and
Abdel-Nabi
,
D. Y.
,
1991
, “
Diffuse Fraction of Daily Global Radiation at Dhahran, Saudi Arabia
,”
Sol. Energy
,
46
(
2
), pp.
89
95
.
22.
Okundamiya
,
M. S.
, and
Ojieabu
,
C. E.
,
2011
, “
Estimation of Global Solar Radiation for Solar Energy, Applications in Agenebode and Ekpoma, Nigeria
,”
Inventi Impact Energy Power
,
2011
(
3
).
23.
Maraj
,
A.
,
Londo
,
A.
,
Firat
,
C.
, and
Karapici
,
R.
,
2014
, “
Solar Radiation Models for the City of Tirana Albania
,”
Int. J. Renew. Energy Res.
,
4
(
2
).
24.
Ulgen
,
K.
, and
Hepbasli
,
A.
,
2004
, “
Solar Radiation Models Part 2: Comparison and Developing New Models
,”
Energy Sources
,
26
(
5
), pp.
521
530
.
25.
Berrizbeitia
,
S. E.
,
Jadraque Gago
,
E.
, and
Muneer
,
T.
,
2020
, “
Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis
,”
Energies
,
13
(
3
), p.
701
.
26.
Benchrifa
,
M.
,
Essalhi
,
H.
,
Tadili
,
R.
,
Bargach
,
M. N.
, and
Mechaqrane
,
A.
,
2019
,“
Development of a Daily Databank of Solar Radiation Components for Moroccan Territory
,”
Int. J. Photoenergy
.
27.
Falayi
,
E. O.
,
Adepitan
,
J. O.
, and
Rabiu
,
A. B.
,
2008
, “
Empirical Models for the Correlation of Global Solar Radiation With Meteorological Data for Iseyin, Nigeria
,”
Int. J. Phys. Sci.
,
3
(
9
), pp.
210
216
.
28.
Augustine
,
C.
, and
Nabuchi
,
M. N.
,
2009
, “
Empirical Models for the Correlation of Global Solar Radiation With Meteorological Data for Enugu, Nigeria
,”
Pac. J. Sci. Technol.
,
10
(
1
).
29.
Allen
,
R. G.
,
1997
, “
Self-Calibrating Method for Estimating Solar Radiation From Air Temperature
,”
J. Hydrol. Eng.
,
2
(
2
), pp.
56
57
.
30.
Mboumboue
,
E.
,
Njomo
,
D.
,
Ndiaye
,
M. L.
,
N’diaye
,
P. A.
,
Ndiaye
,
M. F.
, and
Alain Tossa
,
K.
,
2016
, “
On the Applicability of Several Conventional Regression Models for the Estimation of Solar Global Radiation Component in Cameroon and Senegal Sub-Saharan Tropical Regions
,”
J. Renew. Sustain. Energy
,
8
(
2
), p.
025906
.
31.
Soulouknga
,
M. H.
,
Coulibaly
,
O.
,
Doka
,
S. Y.
, and
Kofane
,
T. C.
,
2017
,“
Evaluation of Global Solar Radiation From Meteorological Data in the Sahelian Zone of Chad
,”
Renewables
.
32.
Driesse
,
A.
, and
Thevenard
,
D.
,
2002
, “
A Test of Suehrcke’s Sunshine—Radiation Relationship Using a Global Data Set
,”
Sol. Energy
,
72
(
2
), pp.
167
175
.
33.
Suehrcke
,
H.
,
Bowden
,
R. S.
, and
Hollands
,
K. G. T.
,
2013
, “
Relationship Between Sunshine Duration and Solar Radiation
,”
Sol. Energy
,
92
, pp.
160
171
.
34.
Zou
,
L.
,
Lin
,
A.
,
Wang
,
L.
,
Xia
,
X.
,
Gong
,
W.
,
Zhu
,
H.
, and
Zhao
,
Z.
,
2016
, “
Long-Term Variations of Estimated Global Solar Radiation and the Influencing Factors in Hunan Province, China During 1980–2013
,”
Meteorol. Atmos. Phys.
,
128
(
2
), pp.
155
165
.
35.
Kaplan
,
A. G.
, and
Kaplan
,
Y. A.
,
2020
, “
Developing of the New Models in Solar Radiation Estimation With Curve Fitting Based on Moving Least-Squares Approximation
,”
Renew. Energy
,
146
, pp.
2462
2471
.
36.
Babikir
,
M. H.
,
Njomo
,
D.
,
Khayal
,
M. Y.
,
Temene
,
H. D.
, and
Joel
,
D. T.
,
2018
, “
Estimation of Direct Solar Radiation of Chad
,”
Energy Power Eng.
,
10
(
5
), pp.
212
225
.
37.
Babikir
,
M. H.
,
Njomo
,
D.
,
Barka
,
M.
,
Khayal
,
M. Y.
,
Goron
,
D.
,
Chara-Dackou
,
V. S.
,
Tefouet
,
T. M.
,
Kamta Legue
,
D. R.
,
Gram-shou
,
J. P.
, and
Nzadi
,
S. E.
,
2020
, “
Modeling the Incident Solar Radiation of the City of N'Djamena (Chad) by the Capderou Method
,”
Int. J. Photoenergy
.
38.
Njomo
,
D.
, and
Wald
,
L.
,
2006
, “
Solar Irradiation Retrieval in Cameroon From Meteosat Satellite Imagery Using the Heliosat_2 Method
,”
ISESCO Sci. Technol. Vis.
,
2
(
1
), pp.
19
24
.
39.
Manoel dos Santos
,
C.
,
Escobedo
,
J. F.
,
de Souza
,
A.
,
Ihaddadene
,
R.
,
Gomes
,
E. N.
, and
Prado da Silva
,
B.
,
2021
, “
Comparative Study of 16 Clear-Sky Radiative Transfer Models to Estimate Direct Normal Irradiance (DNI) in Botucatu, Brazil
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
030801
.
40.
Ramgolam
,
Y. K.
,
Bangarigadu
,
K.
, and
Hookoom
,
T.
,
2021
, “
A Robust Methodology for Assessing the Effectiveness of Site Adaptation Techniques for Calibration of Solar Radiation Data
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031009
.
41.
Kleniewska
,
M.
,
Mitrowska
,
D.
, and
Wasilewicz
,
M.
,
2020
, “
Estimating Daily Global Solar Radiation With No Meteorological Data in Poland
,”
Appl. Sci.
,
10
(
3
), p.
778
.
42.
Al-Hajj
,
R.
,
Assi
,
A.
, and
Fouad
,
M.
,
2021
, “
Short-Term Prediction of Global Solar Radiation Energy Using Weather Data and Machine Learning Ensembles: A Comparative Study
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051003
.
43.
Guermoui
,
M.
,
Gairaa
,
K.
,
Boland
,
J.
, and
Arrif
,
T.
,
2021
, “
A Novel Hybrid Model for Solar Radiation Forecasting Using Support Vector Machine and Bee Colony Optimization Algorithm: Review and Case Study
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
020801
.
44.
Kouassi
,
A. P. A.
,
Touré
,
S.
, and
Traoré
,
D.
,
2020
, “
Seasonal Variability of the Solar Energy Potential of the City of Abidjan: Experimental Comparative Study of Two Sunshine Measurement Techniques
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011013
.
45.
Callede
,
J.
, and
Arquisou
,
G.
,
1972
, “
Données Climatologiques Recueillies à la Station Bioclimatologique de Bangui Pendant la Période 1963–1971
,”
Cahiers ORSTOM. Série Hydrol.
,
9
(
4
), pp.
3
26
.
46.
Lefèvre
,
M.
,
Oumbe
,
A.
,
Blanc
,
P.
, and
Wald
,
L.
,
2010
, “
La Base de Données HelioClim de Rayonnement Solaire Disponible au sol : évolution Majeure
,”
LES SATELLITES GRAND CHAMP Pour le Suivi de L’environnement, des Ressources Naturelles et des Risques
,
Clermont-Ferrand, France
, Hal-00547732.
47.
Salazar
,
G.
,
Gueymard
,
C.
,
Galdino
,
J. B.
,
de Castro Vilela
,
O.
, and
Fraidenraich
,
N.
,
2020
, “
Solar Irradiance Time Series Derived From High-Quality Measurements, Satellite-Based Models, and Reanalyses at a Near-EquatorialSite in Brazil
,”
Renew. Sustain. Energy Rev.
,
117
, p. 109478.
48.
Thomas
,
C.
,
Wald
,
L.
,
Wey
,
E.
,
Saboret
,
L.
, and
Blanc
,
P.
,
2017
, “
HelioClim-4, or How to Build a Successful and Sustainable Business Service Based on CAMS Radiation Service
,”
4th International Conference on Energy & Meteorology (ICEM)
,
Bari, Italy
,
June
, hal-01556572.
49.
Marchand
,
M.
,
Saint-Drenan
,
Y. M.
,
Saboret
,
L.
,
Wey
,
E.
, and
Wald
,
L.
,
2020
, “
Performance of CAMS Radiation Service and HelioClim-3 Databases of Solar Radiation at Surface: Evaluating the Spatial Variation in Germany
,”
Adv. Sci. Res., 17
, pp.
143
152
.
50.
Thomas
,
C.
,
Saboret
,
L.
,
Wey
,
E.
,
Blanc
,
P.
, and
Wald
,
L.
,
2016
, “
Validation of the New HelioClim-3 Version 4 Real-Time and Short-Term Forecast Service Using 14 BSRN Stations
,”
Adv. Sci. Res., 13
, pp.
129
136
.
51.
Stone
,
R. J.
,
1993
, “
Improved Statistical Procedure for the Evaluation of Solar Radiation Estimation Models
,”
Sol. Energy
,
51
(
4
), pp.
288
291
.
You do not currently have access to this content.