Abstract

In this study, a solar-driven reduction process of nonstoichiometric cerium oxide in a fixed bed is optimized for efficient water splitting via metal-oxide-based redox cycling. Nitrogen is used as sweeping gas to scavenge oxygen from the beds during the reduction process. A transient lumped heat transfer model is developed for the simulation of the process. Parametric analysis and genetic algorithm are used to find the optimal N2 flow rate and establish a novel N2 feeding strategy with variable flow to maximize the thermal efficiency for water splitting. An efficiency close to 13% is estimated without solid-phase heat recovery, which is more than twice that of the best present experimental systems (∼5%). The results are regarded preliminary as a thermodynamic analysis.

References

1.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen––A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
2.
Muhich
,
C. L.
,
Ehrhart
,
B. D.
,
Al-Shankiti
,
I.
,
Ward
,
B. J.
,
Musgrave
,
C. B.
, and
Weimer
,
A. W.
,
2016
, “
A Review and Perspective of Efficient Hydrogen Generation Via Solar Thermal Water Splitting
,”
Wiley Interdiscip. Rev.: Energy Environ.
,
5
(
3
), pp.
261
287
.
3.
Romero
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Concentrating Solar Thermal Power and Thermochemical Fuels
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9234
9245
.
4.
Funk
,
J. E.
, and
Reinstrom
,
R. M.
,
1966
, “
Energy Requirements in Production of Hydrogen From Water
,”
Ind. Eng. Chem. Process Des. Dev.
,
5
(
3
), pp.
336
342
.
5.
Funk
,
J. E.
,
2001
, “
Thermochemical Hydrogen Production: Past and Present
,”
Int. J. Hydrogen Energy
,
26
(
3
), pp.
185
190
.
6.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
,
2010
, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
(
15
), pp.
4163
4173
.
7.
Licht
,
S.
,
2005
, “
Thermochemical Solar Hydrogen Generation
,”
ChemInform
,
36
(
37
), pp.
4635
4646
.
8.
Bulfin
,
B.
,
Vieten
,
J.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Applications and Limitations of Two Step Metal Oxide Thermochemical Redox Cycles: A Review
,”
J. Mater. Chem. A
,
5
(
36
), pp.
18951
18966
.
9.
Marxer
,
D. A.
,
Furler
,
P.
,
Scheffe
,
J. R.
,
Geerlings
,
H.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene Via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
10.
Nakamura
,
T.
,
1977
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
(
5
), pp.
467
475
.
11.
Palumbo
,
R.
,
Campbell
,
M.
, and
Grafe
,
T.
,
1992
, “
High-Temperature Solar Thermal Processing Zn (s) and CO From ZnO (s) and C (gr) Using Ti2O3 (s) and TiO2 (s)
,”
Energy
,
17
(
2
), pp.
179
190
.
12.
Sibieude
,
F.
,
Ducarroir
,
M.
,
Tofighi
,
A.
, and
Ambriz
,
J.
,
1982
, “
High Temperature Experiments With a Solar Furnace: The Decomposition of Fe3O4, Mn3O4, CdO
,”
Int. J. Hydrogen Energy
,
7
(
1
), pp.
79
88
.
13.
Lundberg
,
M.
,
1993
, “
Model Calculations on Some Feasible Two-Step Water Splitting Processes
,”
Int. J. Hydrogen Energy
,
18
(
5
), pp.
369
376
.
14.
Palumbo
,
R.
,
Lédé
,
J.
,
Boutin
,
O.
,
Ricart
,
E. E.
,
Steinfeld
,
A.
,
Möller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
,
1998
, “
The Production of Zn From ZnO in a High-Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process
,”
Chem. Eng. Sci.
,
53
(
14
), pp.
2503
2517
.
15.
Wang
,
B.
,
Li
,
L.
,
Schäfer
,
F.
,
Pottas
,
J. J.
,
Kumar
,
A.
,
Wheeler
,
V. M.
, and
Lipiński
,
W.
,
2021
, “
Thermal Reduction of Iron–Manganese Oxide Particles in a High-Temperature Packed-Bed Solar Thermochemical Reactor
,”
Chem. Eng. J.
,
412
, p.
128255
.
16.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.
17.
Bevan
,
D.
, and
Kordis
,
J.
,
1964
, “
Mixed Oxides of the Type MO2 (Fluorite)—M2O3—I Oxygen Dissociation Pressures and Phase Relationships in the System CeO2/Ce2O3 at High Temperatures
,”
J. Inorg. Nucl. Chem.
,
26
(
9
), pp.
1509
1523
.
18.
Panlener
,
R.
,
Blumenthal
,
R.
, and
Garnier
,
J.
,
1975
, “
A Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
19.
Sørensen
,
O. T.
,
1976
, “
Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures
,”
J. Solid State Chem.
,
18
(
3
), pp.
217
233
.
20.
Bulfin
,
B.
,
Hoffmann
,
L.
,
de Oliveira
,
L.
,
Knoblauch
,
N.
,
Call
,
F.
,
Roeb
,
M.
,
Sattler
,
C.
, and
Schmücker
,
M.
,
2016
, “
Statistical Thermodynamics of Non-Stoichiometric Ceria and Ceria Zirconia Solid Solutions
,”
Phys. Chem. Chem. Phys.
,
18
(
33
), pp.
23147
23154
.
21.
Hao
,
Y.
,
Yang
,
C.-K.
, and
Haile
,
S. M.
,
2014
, “
Ceria–Zirconia Solid Solutions (Ce1–xZrxO2−δ, x ≤ 0.2) for Solar Thermochemical Water Splitting: A Thermodynamic Study
,”
Chem. Mater.
,
26
(
20
), pp.
6073
6082
.
22.
Zoller
,
S.
,
Koepf
,
E.
,
Roos
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Heat Transfer Model of a 50 kW Solar Receiver–Reactor for Thermochemical Redox Cycling Using Cerium Dioxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021014
.
23.
Kaneko
,
H.
,
Miura
,
T.
,
Fuse
,
A.
,
Ishihara
,
H.
,
Taku
,
S.
,
Fukuzumi
,
H.
,
Naganuma
,
Y.
, and
Tamaura
,
Y.
,
2007
, “
Rotary-Type Solar Reactor for Solar Hydrogen Production With Two-Step Water Splitting Process
,”
Energy Fuels
,
21
(
4
), pp.
2287
2293
.
24.
Wei
,
B.
,
Fakhrai
,
R.
, and
Saadatfar
,
B.
,
2014
, “
Catalytic CO2 Conversion Via Solar-Driven Fluidized Bed Reactors
,”
Int. J. Low-Carbon Technol.
,
9
(
2
), pp.
127
134
.
25.
Koepf
,
E.
,
Villasmil
,
W.
, and
Meier
,
A.
,
2016
, “
Pilot-Scale Solar Reactor Operation and Characterization for Fuel Production Via the Zn/ZnO Thermochemical Cycle
,”
Appl. Energy
,
165
, pp.
1004
1023
.
26.
Bader
,
R.
,
Bala Chandran
,
R.
,
Venstrom
,
L. J.
,
Sedler
,
S. J.
,
Krenzke
,
P. T.
,
De Smith
,
R. M.
,
Banerjee
,
A.
,
Chase
,
T. R.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2015
, “
Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031007
.
27.
Lapp
,
J.
, and
Lipiński
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting Via Nonstoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
.
28.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), p.
031002
.
29.
Koepf
,
E.
,
Advani
,
S. G.
,
Steinfeld
,
A.
, and
Prasad
,
A. K.
,
2012
, “
A Novel Beam-Down, Gravity-Fed, Solar Thermochemical Receiver/Reactor for Direct Solid Particle Decomposition: Design, Modeling, and Experimentation
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16871
16887
.
30.
Welte
,
M.
,
Barhoumi
,
R.
,
Zbinden
,
A.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2016
, “
Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor
,”
Ind. Eng. Chem. Res.
,
55
(
40
), pp.
10618
10625
.
31.
Brkic
,
M.
,
Koepf
,
E.
, and
Meier
,
A.
,
2016
, “
Continuous Solar Carbothermal Reduction of Aerosolized ZnO Particles Under Vacuum in a Directly Irradiated Vertical-Tube Reactor
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
021010
.
32.
Wang
,
B.
,
Li
,
L.
,
Pottas
,
J. J.
,
Bader
,
R.
,
Kreider
,
P. B.
,
Wheeler
,
V. M.
, and
Lipiński
,
W.
,
2020
, “
Thermal Model of a Solar Thermochemical Reactor for Metal Oxide Reduction
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051002
.
33.
Professorship of Renewable Energy Carrier
,” Eidgenössische Technische Hochschule Zürich, https://prec.ethz.ch/research/solar-fuels.html, Accessed March 6, 2022.
34.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
S. M.
, and
Steinfeld
,
A.
,
2012
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
12
), pp.
1797
1801
.
35.
Furler
,
P.
, and
Steinfeld
,
A.
,
2015
, “
Heat Transfer and Fluid Flow Analysis of a 4 kW Solar Thermochemical Reactor for Ceria Redox Cycling
,”
Chem. Eng. Sci.
,
137
, pp.
373
383
.
36.
Hoes
,
M.
,
Ackermann
,
S.
,
Theiler
,
D.
,
Furler
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Additive-Manufactured Ordered Porous Structures Made of Ceria for Concentrating Solar Applications
,”
Energy Technol.
,
7
(
9
), p.
1900484
.
37.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
38.
Bader
,
R.
,
Venstrom
,
L. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production
,”
Energy Fuels
,
27
(
9
), pp.
5533
5544
.
39.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc. A
,
368
(
1923
), pp.
3269
3294
.
40.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
73
.
41.
Gutiérrez
,
F.
, and
Méndez
,
F.
,
2012
, “
Entropy Generation Minimization for the Thermal Decomposition of Methane Gas in Hydrogen Using Genetic Algorithms
,”
Energy Convers. Manage.
,
55
, pp.
1
13
.
42.
Wang
,
J.
,
Yang
,
S.
,
Jiang
,
C.
,
Zhang
,
Y.
, and
Lund
,
P. D.
,
2017
, “
Status and Future Strategies for Concentrating Solar Power in China
,”
Energy Sci. Eng.
,
5
(
2
), pp.
100
109
.
43.
Li
,
L.
,
Yang
,
S.
,
Wang
,
B.
,
Pye
,
J.
, and
Lipiński
,
W.
,
2020
, “
Optical Analysis of a Solar Thermochemical System With a Rotating Tower Reflector and a Receiver–Reactor Array
,”
Opt. Express
,
28
(
13
), pp.
19429
19445
.
44.
Lapp
,
J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2012
, “
Efficiency of Two-Step Solar Thermochemical Non-Stoichiometric Redox Cycles With Heat Recovery
,”
Energy
,
37
(
1
), pp.
591
600
.
45.
Yang
,
S.
,
Li
,
L.
,
Wang
,
B.
,
Li
,
S.
,
Wang
,
J.
,
Lund
,
P.
, and
Lipiński
,
W.
,
2021
, “
Thermodynamic Analysis of a Conceptual Fixed-Bed Solar Thermochemical Cavity Receiver–Reactor Array for Water Splitting Via Ceria Redox Cycling
,”
Front. Energy Res.
,
9
(
253
), p.
565761
.
46.
Li
,
S.
,
Wheeler
,
V. M.
,
Kreider
,
P. B.
,
Bader
,
R.
, and
Lipiński
,
W.
,
2018
, “
Thermodynamic Analyses of Fuel Production Via Solar-Driven Non-Stoichiometric Metal Oxide Redox Cycling. Part 2. Impact of Solid–Gas Flow Configurations and Active Material Composition on System-Level Efficiency
,”
Energy Fuels
,
32
(
10
), pp.
10848
10863
.
47.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
,
129
(
1–4
), pp.
63
94
.
48.
Goldberg
,
D. E.
, and
Holland
,
J. H.
,
1988
, “
Genetic Algorithms and Machine Learning
,”
Mach. Learn.
,
3
(
2/3
), pp.
95
99
.
49.
The MathWorks, Inc.
,
2017b
,
MATLAB and Statistics Toolbox Release
,
The MathWorks, Inc.
,
Natick, MA
.
50.
Venstrom
,
L. J.
,
De Smith
,
R. M.
,
Bala Chandran
,
R.
,
Boman
,
D. B.
,
Krenzke
,
P. T.
, and
Davidson
,
J. H.
,
2015
, “
Applicability of an Equilibrium Model to Predict the Conversion of CO2 to CO Via the Reduction and Oxidation of a Fixed Bed of Cerium Dioxide
,”
Energy Fuels
,
29
(
12
), pp.
8168
8177
.
You do not currently have access to this content.