Abstract

Thermionic converters have potential as an energy conversion technology for high-temperature space and terrestrial applications using concentrated solar, nuclear reaction, and combustion processes as the heat source. Recent studies have generated experimental performance data for narrow-gap thermionic energy conversion devices. This investigation explores the use of genetic algorithms to fit existing data with physics-inspired model equations. The resulting model equations can be used for performance prediction for system design optimization or to explore parametric effects on performance. The model equations incorporate Richardson’s law for current density, including both the saturated and Boltzmann regimes, with appropriate relations for power delivered to the external load. The transition regime is characterized using two separate models, each accounting for nonuniformity in emission surfaces and irregularities in the manufacturing process. The trained models enable performance prediction of small-gap thermionic energy conversion devices. In this study, data were fitted for two different prototype designs. The prototype test data and postulated values for the work functions and a transition regime parameter are substituted into physics-inspired model equations, yielding performance models with three adjustable constants. Optimized values of these constants are determined using a genetic algorithm to best fit the experimentally determined performance data for prototype thermionic conversion devices tested in earlier studies. This approach is demonstrated to fit the performance data to within 9%. This methodology also allows the user to back-infer the effective work function values, which were found in this study to be consistent with independent measurement.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
King
,
D.
,
Luke
,
J.
, and
Zavadil
,
K.
,
2001
, “
The Microminiature Thermionic Converter
,”
AIP. Conf. Proc.
,
552
(
1
), pp.
1152
1157
.
2.
Da Rosa
,
A.
,
2009
,
Fundamentals of Renewable Energy Processes
, 2nd.,
Elsevier Academic Press Boston
,
MA
, Chap. 6.
3.
Hatsopoulos
,
G.
, and
Gyftopoulos
,
E.
,
1973
,
Thermionic Energy Conversion. Volume I—Processes and Devices
,
MIT Press
,
Cambridge, MA
.
4.
Hatsopoulos
,
G.
, and
Gyftopoulos
,
E.
,
1979
,
Thermionic Energy Conversion. Volume II. Theory, Technology, and Application
,
MIT Press
,
Cambridge, MA
.
5.
Hatsopoulos
,
G.
, and
Kaye
,
J.
,
1958
, “
Analysis and Experimental Results of a Diode Configuration of a Novel Thermoelectric Engine
,”
Proc. IRE
,
46
(
9
), pp.
1574
1579
.
6.
Meir
,
S.
,
Stephanos
,
C.
,
Geballe
,
T.
, and
Mannhart
,
J.
,
2013
, “
Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat Into Electric Power
,”
J. Renew. Sustain. Energy
,
5
(
4
), p.
043127
.
7.
Hatsopoulos
,
G.
, and
Kaye
,
J.
,
1958
, “
Measured Thermal Efficiencies of a Diode Configuration of a Thermo Electron Engine
,”
J. Appl. Phys.
,
29
(
7
), pp.
1124
1125
.
8.
Littau
,
K.
,
Sahasrabuddhe
,
K.
,
Barfield
,
D.
,
Yuan
,
H.
,
Shen
,
Z.
,
Howe
,
R.
, and
Melosh
,
N.
,
2013
, “
Microbead-Separated Thermionic Energy Converter With Enhanced Emission Current
,”
Phys. Chem. Chem. Phys.
,
15
(
34
), pp.
14442
14446
.
9.
Campbell
,
M.
,
Azadi
,
M.
,
Lu
,
Z.
,
Eskenazi
,
A.
,
Jain
,
A.
,
Bang
,
J.
,
Sieg
,
P.
,
Popov
,
G.
,
Nicaise
,
S.
,
Van Houten
,
K.
,
Schmitt
,
F.
,
Schwede
,
J.
, and
Bargatin
,
I.
,
2020
, “
Nanostructured Spacers for Thermionic and Thermophotovoltaic Energy Converters
,”
J. Microelectromech. Syst.
,
29
(
5
), pp.
637
644
.
10.
Campbell
,
M.
,
Celenza
,
T.
,
Schmitt
,
F.
,
Schwede
,
J.
, and
Bargatin
,
I.
,
2021
, “
Progress Toward High Power Output in Thermionic Energy Converters
,”
Adv. Sci.
,
8
(
9
), p.
2003812
.
11.
Belbachir
,
R.
,
An
,
Z.
, and
Ono
,
T.
,
2014
, “
Thermal Investigation of a Micro-Gap Thermionic Power Generator
,”
J. Micromech. Microeng.
,
24
(
8
), p.
085009
.
12.
Ma
,
T.
,
Jacobs
,
R.
,
Booske
,
J.
, and
Morgan
,
D.
,
2021
, “
Work Function Trends and New Low-Work-Function Boride and Nitride Materials for Electron Emission Applications
,”
J. Phys. Chem. C
,
125
(
31
), pp.
17400
17410
.
13.
Njike
,
U.
,
Cabrera
,
S.
,
McClure
,
E.
, and
Carey
,
V.
,
2021
, “
Use of Machine Learning Tools to Assess Surface Dryout During Nucleate and Transition Boiling on Surfaces With Different Wetting and Substrate Properties
,”
ASME 2021 Heat Transfer Summer Conference
,
Virtual, Online
,
June 16–18
, ASME, p.
V001T11A006
.
14.
Longo
,
R.
,
2019
, “
A Statistical Mechanics Derivation of the Empirical Asymptotic Thermionic Emission Equation
,”
AIP Adv.
,
9
(
8
), p.
085227
.
15.
Scott
,
J.
,
1981
, “
Extension of Langmuir Space–charge Theory Into the Accelerating Field Range
,”
J. Appl. Phys.
,
52
(
7
), pp.
4406
4410
.
16.
Hasker
,
J.
,
1983
, “
Calculation of Diode Charateristics and Proposed Characterization of Cathode Emission Capability
,”
Appl. Surface Sci.
,
16
(
1
), pp.
220
237
.
17.
Eng
,
G.
,
1985
, “
A New Correction to Schottky Barrier Lowering in Cathodes
,”
J. Appl. Phys.
,
58
(
11
), pp.
4365
4373
.
You do not currently have access to this content.