Abstract

The tilt angle of photovoltaic (PV) panels is a crucial determinant of their performance and can be adjusted using different tracking methods. Periodically changing the tilt angle strikes a practical balance between efficiency and cost. This work introduces a bi-directional long short-term memory (Bi-LSTM)-based direct normal irradiance (DNI) prediction to estimate the time intervals for the tilt angle adjustments. DNI prediction involves 22-year (2000–2022) historical time series data and the Bi-LSTM deep learning model to predict DNI at different time frames for the location Madurai, India. Using the predicted DNI, tilt angle-based DNI is mapped using the tilt angle correlation through a nearest neighborhood interpolation method. DNI potential over a specific period is utilized to find the optimum time intervals for the tilt angle adjustments. The simulation study of this work is implemented with a 5 kW grid-connected solar PV system using pvsyst software. The effectiveness of the proposed methodology is evaluated based on the improvements in power output, levelized cost of energy (LCOE), and carbon emission reductions and compared with other existing methods. The results showed that using the proposed optimal tilt angle intervals led to a 10.31% increase in PV output power, the lowest LCOE at 3.61 c/kW h, and 8.363 tCO2/year carbon emissions.

References

1.
Gwesha
,
A. O.
,
Li
,
P.
, and
Alfulayyih
,
Y. M.
,
2021
, “
Optimization of Fixed Photovoltaic Panel Tilt Angles for Maximal Energy Harvest Considering Year-Around Sky Coverage Conditions
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021002
.
2.
Rabaia
,
M. K. H.
,
Abdelkareem
,
M. A.
,
Sayed
,
E. T.
,
Elsaid
,
K.
,
Chae
,
K. J.
,
Wilberforce
,
T.
, and
Olabi
,
A. G.
,
2021
, “
Environmental Impacts of Solar Energy Systems: A Review
,”
Sci. Total Environ.
,
754
, p.
141989
.
3.
Badhotiya
,
G. K.
,
Sharma
,
V.
,
Singh
,
D. B.
, and
Dobriyal
,
R.
,
2021
, “
Identification of Key Determinants of Solar Power System Adoption in India
,”
Mater. Today: Proc.
,
46
(
20
), pp.
10449
10453
.
4.
Talaat
,
M.
,
Said
,
T.
,
Essa
,
M. A.
, and
Hatata
,
A. Y.
,
2022
, “
Integrated MFFNN-MVO Approach for PV Solar Power Forecasting Considering Thermal Effects and Environmental Conditions
,”
Int. J. Electr. Power Energy Syst.
,
135
, p.
107570
.
5.
Sharma
,
A.
,
Kallioğlu
,
M. A.
,
Awasthi
,
A.
,
Chauhan
,
R.
,
Fekete
,
G.
, and
Singh
,
T.
,
2021
, “
Correlation Formulation for Optimum Tilt Angle for Maximizing the Solar Radiation on Solar Collector in the Western Himalayan Region
,”
Case Stud. Therm. Eng.
,
26
, p.
101185
.
6.
Xu
,
L.
,
Long
,
E.
,
Wei
,
J.
,
Cheng
,
Z.
, and
Zheng
,
H.
,
2021
, “
A New Approach to Determine the Optimum Tilt Angle and Orientation of Solar Collectors in Mountainous Areas With High Altitude
,”
Energy
,
237
, p.
121507
.
7.
Hafez
,
A. Z.
,
Soliman
,
A.
,
El-Metwally
,
K. A.
, and
Ismail
,
I. M.
,
2017
, “
‘Tilt and Azimuth Angles in Solar Energy Applications–A Review’
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
147
168
.
8.
Ayaz
,
R.
,
Durusu
,
A.
, and
Akca
,
H.
,
2017
, “
Determination of Optimum Tilt Angle for Different Photovoltaic Technologies Considering Ambient Conditions: A Case Study for Burdur, Turkey
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041001
.
9.
Bayrakçı
,
H. C.
,
Demircan
,
C.
, and
Keçebaş
,
A.
,
2018
, “
The Development of Empirical Models for Estimating Global Solar Irradiance on Horizontal Surface: A Case Study
,”
Renew. Sustain. Energy Rev.
,
81
(
2
), pp.
2771
2782
.
10.
Lai
,
J. P.
,
Chang
,
Y. M.
,
Chen
,
C. H.
, and
Pai
,
P. F.
,
2020
, “
A Survey of Machine Learning Models in Renewable Energy Predictions
,”
Appl. Sci.
,
10
(
17
), p.
5975
.
11.
Kumar
,
D.
,
2020
, “
Satellite-Based Solar Energy Potential Analysis for Southern States of India
,”
Energy Rep.
,
6
, pp.
1487
1500
.
12.
Srivastava
,
R. C.
, and
Pandey
,
H.
,
2013
, “
Estimating Angstrom-Prescott Coefficients for India and Developing a Correlation Between Sunshine Hours and Global Solar Irradiance for India
,”
Int. Scholarly Res. Not.
,
2013
(
1
), p.
403742
.
13.
Khahro
,
S. F.
,
Tabbassum
,
K.
,
Talpur
,
S.
,
Alvi
,
M. B.
,
Liao
,
X.
, and
Dong
,
L.
,
2015
, “
Evaluation of Solar Energy Resources by Establishing Empirical Models for Diffuse Solar Radiation on Tilted Surface and Analysis for Optimum Tilt Angle for a Prospective Location in Southern Region of Sindh, Pakistan
,”
Int. J. Electr. Power Energy Syst.
,
64
, pp.
1073
1080
.
14.
Perez
,
R.
,
Lorenz
,
E.
,
Pelland
,
S.
,
Beauharnois
,
M.
,
Van Knowe
,
G.
,
Hemker Jr
,
K.
, and
Pomares
,
L. M.
,
2013
, “
Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe
,”
Sol. Energy
,
94
, pp.
305
326
.
15.
Durrani
,
S. P.
,
Balluff
,
S.
,
Wurzer
,
L.
, and
Krauter
,
S.
,
2018
, “
Photovoltaic Yield Prediction Using an Irradiance Forecast Model Based on Multiple Neural Networks
,”
J. Mod. Power Syst. Clean Energy
,
6
(
2
), pp.
255
267
.
16.
Ramu
,
P.
, and
Gangatharan
,
S.
,
2023
, “
An Ensemble Machine Learning-Based Solar Power Prediction of Meteorological Variability Conditions to Improve Accuracy in Forecasting
,”
J. Chin. Inst. Eng.
,
46
(
7
), pp.
737
753
.
17.
Qing
,
X.
, and
Niu
,
Y.
,
2018
, “
Hourly Day-Ahead Solar Irradiance Prediction Using Weather Forecasts by LSTM
,”
Energy
,
148
, pp.
461
468
.
18.
Cannizzaro
,
D.
,
Aliberti
,
A.
,
Bottaccioli
,
L.
,
Macii
,
E.
,
Acquaviva
,
A.
, and
Patti
,
E.
,
2021
, “
Solar Radiation Forecasting Based on Convolutional Neural Network and Ensemble Learning
,”
Expert Syst. Appl.
,
181
, p.
115167
.
19.
Agbulut
,
U.
,
Gürel
,
A. E.
, and
Biçen
,
Y.
,
2021
, “
Prediction of Daily Global Solar Radiation Using Different Machine Learning Algorithms: Evaluation and Comparison
,”
Renew. Sustain. Energy Rev.
,
135
, p.
110114
.
20.
Feng
,
Y.
,
Hao
,
W.
,
Li
,
H.
,
Cui
,
N.
,
Gong
,
D.
, and
Gao
,
L.
,
2020
, “
Machine Learning Models to Quantify and Map Daily Global Solar Irradiance and Photovoltaic Power
,”
Renew. Sustain. Energy Rev.
,
118
, p.
109393
.
21.
Mousavi
,
S. M.
,
Mostafavi
,
E. S.
, and
Jiao
,
P.
,
2017
, “
Next Generation Prediction Model for Daily Solar Irradiance on Horizontal Surface Using a Hybrid Neural Network and Simulated Annealing Method
,”
Energy Convers. Manage.
,
153
, pp.
671
682
.
22.
Muniyandi
,
V.
,
Manimaran
,
S.
,
Ramu
,
P. R.
, and
Gangatharan
,
S.
,
2023
, “
A Comprehensive Analysis of Recent Advances in Deep Learning Based Solar Irradiance Forecasting
,”
7th International Conference on Trends in Electronics and Informatics (ICOEI)
,
Tirunelveli, India
,
Apr. 11–13
, pp.
1250
1257
.
23.
Luo
,
X.
,
Zhang
,
D.
, and
Zhu
,
X.
,
2021
, “
Deep Learning-Based Forecasting of Photovoltaic Power Generation by Incorporating Domain Knowledge
,”
Energy
,
225
, p.
120240
.
24.
Tuncer
,
E.
, and
Bolat
,
E. D.
,
2022
, “
Classification of Epileptic Seizures From Electroencephalogram (EEG) Data Using Bidirectional Short-Term Memory (Bi-LSTM) Network Architecture
,”
Biomed. Signal Process. Control
,
73
, p.
103462
.
25.
Ho-Huu
,
V.
,
Vo-Duy
,
T.
,
Luu-Van
,
T.
,
Le-Anh
,
L.
, and
Nguyen-Thoi
,
T.
,
2016
, “
Optimal Design of Truss Structures With Frequency Constraints Using Improved Differential Evolution Algorithm Based on an Adaptive Mutation Scheme
,”
Autom. Constr.
,
68
, pp.
81
94
.
26.
Ramu
,
P.
,
Gangatharan
,
S.
,
Rangasamy
,
S.
, and
Mihet-Popa
,
L.
,
2023
, “
Categorization of Loads in Educational Institutions to Effectively Manage Peak Demand and Minimize Energy Cost Using an Intelligent Load Management Technique
,”
Sustainability
,
15
(
16
), p.
12209
.
27.
Cornejo-Bueno
,
L.
,
Casanova-Mateo
,
C.
,
Sanz-Justo
,
J.
, and
Salcedo-Sanz
,
S.
,
2019
, “
Machine Learning Regressors for Solar Irradiance Estimation From Satellite Data
,”
Sol. Energy
,
183
, pp.
768
775
.
28.
Ahmad
,
M. J.
, and
Tiwari
,
G. N.
,
2009
, “
Optimum Tilt Angle for Solar Collectors Used in India
,”
Int. J. Ambient Energy
,
30
(
2
), pp.
73
78
.
29.
Yilmaz
,
S.
,
Ozcalik
,
H. R.
,
Dogmus
,
O.
,
Dincer
,
F.
,
Akgol
,
O.
, and
Karaaslan
,
M.
,
2015
, “
Design of Two Axes Sun Tracking Controller With Analytically Solar Radiation Calculations
,”
Renew. Sustain. Energy Rev.
,
43
, pp.
997
1005
.
30.
Ibnelouad
,
A.
,
El Kari
,
A.
,
Ayad
,
H.
, and
Mjahed
,
M.
,
2020
, “
Improved Cooperative Artificial Neural Network-Particle Swarm Optimization Approach for Solar Photovoltaic Systems Using Maximum Power Point Tracking
,”
Int. Trans. Electr. Energy Syst.
,
30
(
8
), p.
12439
.
31.
Vijay
,
M.
, and
Saravanan
,
M.
,
2022
, “
Solar Irradiance Forecasting Using Bayesian Optimization Based Machine Learning Algorithm to Determine the Optimal Size of a Residential PV System
,”
International Conference on Sustainable Computing and Data Communication Systems
,
Erode, India
,
Apr. 7–9
, pp.
744
749
(INSPEC Accession Number: 21725341).
32.
Perveen
,
G.
,
Rizwan
,
M.
, and
Goel
,
N.
,
2019
, “
Comparison of Intelligent Modelling Techniques for Forecasting Solar Energy and Its Application in Solar PV Based Energy System
,”
IET Energy Syst. Integr.
,
1
(
1
), pp.
34
51
.
33.
Husain
,
S.
, and
Khan
,
U. A.
,
2021
, “
Development of Machine Learning Models Based on Air Temperature for Estimation of Global Solar Radiation in India
,”
Environ. Prog. Sustain. Energy
,
41
(
4
), p.
13782
.
34.
Liu
,
W.
,
Li
,
J.
,
Li
,
S.
,
Luo
,
J.
, and
Jiang
,
X.
,
2021
, “
Research on Optimum Tilt Angle of Photovoltaic Module Based on Regional Clustering of Influencing Factors of Power Generation
,”
Int. J. Energy Res.
,
45
(
7
), pp.
11002
11017
.
35.
Kaya
,
F.
,
Şahin
,
G.
, and
Alma
,
M. H.
,
2021
, “
Investigation Effects of Environmental and Operating Factors on PV Panel Efficiency Using by Multivariate Linear Regression
,”
Int. J. Energy Res.
,
45
(
1
), pp.
554
567
.
36.
García-Hinde
,
O.
,
Terrén-Serrano
,
G.
,
Hombrados-Herrera
,
M. Á.
,
Gómez-Verdejo
,
V.
,
Jiménez-Fernández
,
S.
,
Casanova-Mateo
,
C.
, and
Salcedo-Sanz
,
S.
,
2018
, “
Evaluation of Dimensionality Reduction Methods Applied to Numerical Weather Models for Solar Radiation Forecasting
,”
Eng. Appl. Artif. Intell.
,
69
, pp.
157
167
.
37.
Garud
,
K. S.
,
Jayaraj
,
S.
, and
Lee
,
M. Y.
,
2021
, “
A Review on Modeling of Solar Photovoltaic Systems Using Artificial Neural Networks, Fuzzy Logic, Genetic Algorithm and Hybrid Models
,”
Int. J. Energy Res.
,
45
(
1
), pp.
6
35
.
38.
Hou
,
X.
,
Ju
,
C.
, and
Wang
,
B.
,
2023
, “
Prediction of Solar Irradiance Using Convolutional Neural Network and Attention Mechanism-Based Long Short-Term Memory Network Based on Similar Day Analysis and an Attention Mechanism
,”
Heliyon
,
9
(
11
), p.
21484
.
39.
Muniyandi
,
V.
,
Manimaran
,
S.
, and
Balasubramanian
,
A. K.
,
2023
, “
Improving the Power Output of a Partially Shaded Photovoltaic Array Through a Hybrid Magic Square Configuration With Differential Evolution-Based Adaptive P&O MPPT Method
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051001
.
40.
Irwana
,
Y. M.
,
Ameliaa
,
A. R.
,
Irwantoa
,
M.
,
Ma
,
F.
,
Leowa
,
W. Z.
,
Gomesha
,
N.
, and
Safwati
,
I.
,
2015
, “
Stand-Alone Photovoltaic (SAPV) System Assessment Using PVSYST Software
,”
Energy Procedia
,
79
, pp.
596
603
.
41.
Karabiber
,
A.
, and
Güneş
,
Y.
,
2023
, “
Single-Motor and Dual-Axis Solar Tracking System for Micro Photovoltaic Power Plants
,”
ASME J. Sol. Energy Eng
,
145
(
5
), p.
051004
.
42.
Sun
,
X.
,
Khan
,
M. R.
,
Deline
,
C.
, and
Alam
,
M. A.
,
2018
, “
Optimization and Performance of Bifacial Solar Modules: A Global Perspective
,”
Appl. Energy
,
212
, pp.
1601
1610
.
43.
Gupta
,
A.
,
Agrawal
,
S.
, and
Pal
,
Y.
,
2020
, “
Performance Evaluation of Hybrid Photovoltaic Thermal Thermoelectric Collector Using Grasshopper Optimization Algorithm With Simulated Annealing
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061004
.
44.
Zabihi
,
A.
,
Parhamfar
,
M.
,
Duvvuri
,
S. S.
, and
Abtahi
,
M.
,
2024
, “
Increase Power Output and Radiation in Photovoltaic Systems by Installing Mirrors
,”
Meas. Sens.
,
31
, p.
100946
.
45.
Maghrabie
,
H. M.
,
Mohamed
,
A. S. A.
, and
Salem Ahmed
,
M.
,
2020
, “
Experimental Investigation of a Combined Photovoltaic Thermal System Via Air Cooling for Summer Weather of Egypt
,”
ASME J. Thermal Sci. Eng. Appl.
,
12
(
4
), p.
041022
.
46.
Kazem
,
H. A.
,
Chaichan
,
M. T.
,
Al-Waeli
,
A. H. A.
, and
Sopian
,
K.
,
2020
, “
A Review of Dust Accumulation and Cleaning Methods for Solar Photovoltaic Systems
,”
J. Cleaner Prod.
,
276
, p.
123187
.
47.
Maleki
,
A.
,
Haghighi
,
A.
,
El Haj Assad
,
M.
,
Mahariq
,
I.
, and
Alhuyi Nazari
,
M.
,
2020
, “
A Review on the Approaches Employed for Cooling PV Cells'
,”
Sol. Energy
,
209
, pp.
170
185
.
48.
Kazem
,
H. A.
,
Al-Waeli
,
A. H. A.
,
Chaichan
,
M. T.
,
Sopian
,
K.
,
Ahmed
,
A. A.
, and
Wan Nor Roslam
,
W. I.
,
2023
, “
Enhancement of Photovoltaic Module Performance Using Passive Cooling (Fins): A Comprehensive Review
,”
Case Stud. Therm. Eng.
,
49
, p.
103316
.
49.
Abdulmunem
,
A. R.
,
Samin
,
P. M.
,
Rahman
,
H. A.
,
Hussien
,
H. A.
, and
Mazali
,
I. I.
,
2020
, “
Enhancing PV Cell's Electrical Efficiency Using Phase Change Material With Copper Foam Matrix and Multi-walled Carbon Nanotubes as Passive Cooling Method
,”
Renew. Energy
,
160
, pp.
663
675
.
You do not currently have access to this content.